Connexin 43 hemichannels and pannexin‐1 channels contribute to the α‐synuclein‐induced dysfunction and death of astrocytes

Diverse studies have suggested that cytoplasmic inclusions of misfolded α‐synuclein in neuronal and glial cells are main pathological features of different α‐synucleinopathies, including Parkinson's disease and dementia with Lewy bodies. Up to now, most studies have focused on the effects of α‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glia 2019-08, Vol.67 (8), p.1598-1619
Hauptverfasser: Díaz, Esteban F., Labra, Valeria C., Alvear, Tanhia F., Mellado, Luis A., Inostroza, Carla A., Oyarzún, Juan E., Salgado, Nicole, Quintanilla, Rodrigo A., Orellana, Juan A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1619
container_issue 8
container_start_page 1598
container_title Glia
container_volume 67
creator Díaz, Esteban F.
Labra, Valeria C.
Alvear, Tanhia F.
Mellado, Luis A.
Inostroza, Carla A.
Oyarzún, Juan E.
Salgado, Nicole
Quintanilla, Rodrigo A.
Orellana, Juan A.
description Diverse studies have suggested that cytoplasmic inclusions of misfolded α‐synuclein in neuronal and glial cells are main pathological features of different α‐synucleinopathies, including Parkinson's disease and dementia with Lewy bodies. Up to now, most studies have focused on the effects of α‐synuclein on neurons, whereas the possible alterations of astrocyte functions and neuron–glia crosstalk have received minor attention. Recent evidence indicates that cellular signaling mediated by hemichannels and pannexons is critical for astroglial function and dysfunction. These channels constitute a diffusional route of communication between the cytosol and the extracellular space and during pathological scenarios they may lead to homeostatic disturbances linked to the pathogenesis and progression of different diseases. Here, we found that α‐synuclein enhances the opening of connexin 43 (Cx43) hemichannels and pannexin‐1 (Panx1) channels in mouse cortical astrocytes. This response was linked to the activation of cytokines, the p38 MAP kinase, the inducible nitric oxide synthase, cyclooxygenase 2, intracellular free Ca2+ concentration ([Ca2+]i), and purinergic and glutamatergic signaling. Relevantly, the α‐synuclein‐induced opening of hemichannels and pannexons resulted in alterations in [Ca2+]i dynamics, nitric oxide (NO) production, gliotransmitter release, mitochondrial morphology, and astrocyte survival. We propose that α‐synuclein‐mediated opening of astroglial Cx43 hemichannels and Panx1 channels might constitute a novel mechanism involved in the pathogenesis and progression of α‐synucleinopathies. Main Points α‐Synuclein activates Cx43 hemichannels and Panx1 channels in astrocytes. Opening of Cx43 hemichannels and Panx1 channels disturbs [Ca2+]i dynamics, NO production, gliotransmitter release, mitochondrial morphology, and survival of astrocytes.
doi_str_mv 10.1002/glia.23631
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2216774240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2216774240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-58727f64242ad6dfd1efd87dc73c4a55a46988397b10aa542e784549de4727b93</originalsourceid><addsrcrecordid>eNp90UFq3DAUBmBRWppJ0k0PUATdlIITPUm27GUYmjQw0E27NhrpuaPgkSaWTOJde4NcJRfJIXqSKOM0iy66EtL79PPgJ-Q9sBNgjJ_-7J0-4aIS8IosgDV1ASCq12TB6kYWIBs4IIcxXjEG-aLekgMBTAgm6gX5vQze463zVAq6wa0zG50f-ki1t3Sn5-GfX3dAXyYm-DS49ZiQpkDTBunDfRZx8qPpca-dt6NBS-0Uu9Gb5ILfB1rUaUNDR3VMQzBTwnhM3nS6j_ju-TwiP86_fF9-LVbfLi6XZ6vCiFJBUdaKq66SXHJtK9tZwM7WyholjNRlqWXV1LVo1BqY1qXkqGpZysaizB_XjTgin-bc3RCuR4yp3bposO-1xzDGlnOolMr5LNOP_9CrMA4-b5eVUFJwpnhWn2dlhhDjgF27G9xWD1MLrH0qpn0qpt0Xk_GH58hxvUX7Qv82kQHM4Mb1OP0nqr1YXZ7NoY9NPJxp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237432072</pqid></control><display><type>article</type><title>Connexin 43 hemichannels and pannexin‐1 channels contribute to the α‐synuclein‐induced dysfunction and death of astrocytes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Díaz, Esteban F. ; Labra, Valeria C. ; Alvear, Tanhia F. ; Mellado, Luis A. ; Inostroza, Carla A. ; Oyarzún, Juan E. ; Salgado, Nicole ; Quintanilla, Rodrigo A. ; Orellana, Juan A.</creator><creatorcontrib>Díaz, Esteban F. ; Labra, Valeria C. ; Alvear, Tanhia F. ; Mellado, Luis A. ; Inostroza, Carla A. ; Oyarzún, Juan E. ; Salgado, Nicole ; Quintanilla, Rodrigo A. ; Orellana, Juan A.</creatorcontrib><description>Diverse studies have suggested that cytoplasmic inclusions of misfolded α‐synuclein in neuronal and glial cells are main pathological features of different α‐synucleinopathies, including Parkinson's disease and dementia with Lewy bodies. Up to now, most studies have focused on the effects of α‐synuclein on neurons, whereas the possible alterations of astrocyte functions and neuron–glia crosstalk have received minor attention. Recent evidence indicates that cellular signaling mediated by hemichannels and pannexons is critical for astroglial function and dysfunction. These channels constitute a diffusional route of communication between the cytosol and the extracellular space and during pathological scenarios they may lead to homeostatic disturbances linked to the pathogenesis and progression of different diseases. Here, we found that α‐synuclein enhances the opening of connexin 43 (Cx43) hemichannels and pannexin‐1 (Panx1) channels in mouse cortical astrocytes. This response was linked to the activation of cytokines, the p38 MAP kinase, the inducible nitric oxide synthase, cyclooxygenase 2, intracellular free Ca2+ concentration ([Ca2+]i), and purinergic and glutamatergic signaling. Relevantly, the α‐synuclein‐induced opening of hemichannels and pannexons resulted in alterations in [Ca2+]i dynamics, nitric oxide (NO) production, gliotransmitter release, mitochondrial morphology, and astrocyte survival. We propose that α‐synuclein‐mediated opening of astroglial Cx43 hemichannels and Panx1 channels might constitute a novel mechanism involved in the pathogenesis and progression of α‐synucleinopathies. Main Points α‐Synuclein activates Cx43 hemichannels and Panx1 channels in astrocytes. Opening of Cx43 hemichannels and Panx1 channels disturbs [Ca2+]i dynamics, NO production, gliotransmitter release, mitochondrial morphology, and survival of astrocytes.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.23631</identifier><identifier>PMID: 31033038</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>alpha-Synuclein - genetics ; Animals ; Astrocytes ; Astrocytes - pathology ; Calcium (intracellular) ; Calcium Channels - genetics ; Calcium Channels - metabolism ; Calcium ions ; Calcium oxide ; Calcium signalling ; Cell Communication - genetics ; Cell Death - genetics ; Cells, Cultured ; Channels ; connexin ; Connexin 43 ; Connexin 43 - genetics ; Connexins - genetics ; Cortex ; Crosstalk ; Cyclooxygenase-2 ; Cytokines ; Cytokines - metabolism ; Cytosol ; Dementia disorders ; glia ; Glial cells ; Glutamatergic transmission ; Inclusion bodies ; Inclusions ; Intracellular signalling ; Kinases ; Lewy bodies ; MAP kinase ; Mice ; Mitochondria ; Mitochondria - genetics ; Mitochondria - ultrastructure ; Morphology ; Movement disorders ; Nerve Tissue Proteins - genetics ; Neurodegenerative diseases ; neuroinflammation ; Neuronal-glial interactions ; Neurotransmitter Agents - metabolism ; Nitric oxide ; Nitric Oxide - biosynthesis ; Nitric-oxide synthase ; pannexin ; Parkinson's disease ; Pathogenesis ; RNA, Small Interfering - genetics ; Synuclein ; α‐synucleinopathies</subject><ispartof>Glia, 2019-08, Vol.67 (8), p.1598-1619</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-58727f64242ad6dfd1efd87dc73c4a55a46988397b10aa542e784549de4727b93</citedby><cites>FETCH-LOGICAL-c3571-58727f64242ad6dfd1efd87dc73c4a55a46988397b10aa542e784549de4727b93</cites><orcidid>0000-0003-4076-207X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.23631$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.23631$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31033038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Díaz, Esteban F.</creatorcontrib><creatorcontrib>Labra, Valeria C.</creatorcontrib><creatorcontrib>Alvear, Tanhia F.</creatorcontrib><creatorcontrib>Mellado, Luis A.</creatorcontrib><creatorcontrib>Inostroza, Carla A.</creatorcontrib><creatorcontrib>Oyarzún, Juan E.</creatorcontrib><creatorcontrib>Salgado, Nicole</creatorcontrib><creatorcontrib>Quintanilla, Rodrigo A.</creatorcontrib><creatorcontrib>Orellana, Juan A.</creatorcontrib><title>Connexin 43 hemichannels and pannexin‐1 channels contribute to the α‐synuclein‐induced dysfunction and death of astrocytes</title><title>Glia</title><addtitle>Glia</addtitle><description>Diverse studies have suggested that cytoplasmic inclusions of misfolded α‐synuclein in neuronal and glial cells are main pathological features of different α‐synucleinopathies, including Parkinson's disease and dementia with Lewy bodies. Up to now, most studies have focused on the effects of α‐synuclein on neurons, whereas the possible alterations of astrocyte functions and neuron–glia crosstalk have received minor attention. Recent evidence indicates that cellular signaling mediated by hemichannels and pannexons is critical for astroglial function and dysfunction. These channels constitute a diffusional route of communication between the cytosol and the extracellular space and during pathological scenarios they may lead to homeostatic disturbances linked to the pathogenesis and progression of different diseases. Here, we found that α‐synuclein enhances the opening of connexin 43 (Cx43) hemichannels and pannexin‐1 (Panx1) channels in mouse cortical astrocytes. This response was linked to the activation of cytokines, the p38 MAP kinase, the inducible nitric oxide synthase, cyclooxygenase 2, intracellular free Ca2+ concentration ([Ca2+]i), and purinergic and glutamatergic signaling. Relevantly, the α‐synuclein‐induced opening of hemichannels and pannexons resulted in alterations in [Ca2+]i dynamics, nitric oxide (NO) production, gliotransmitter release, mitochondrial morphology, and astrocyte survival. We propose that α‐synuclein‐mediated opening of astroglial Cx43 hemichannels and Panx1 channels might constitute a novel mechanism involved in the pathogenesis and progression of α‐synucleinopathies. Main Points α‐Synuclein activates Cx43 hemichannels and Panx1 channels in astrocytes. Opening of Cx43 hemichannels and Panx1 channels disturbs [Ca2+]i dynamics, NO production, gliotransmitter release, mitochondrial morphology, and survival of astrocytes.</description><subject>alpha-Synuclein - genetics</subject><subject>Animals</subject><subject>Astrocytes</subject><subject>Astrocytes - pathology</subject><subject>Calcium (intracellular)</subject><subject>Calcium Channels - genetics</subject><subject>Calcium Channels - metabolism</subject><subject>Calcium ions</subject><subject>Calcium oxide</subject><subject>Calcium signalling</subject><subject>Cell Communication - genetics</subject><subject>Cell Death - genetics</subject><subject>Cells, Cultured</subject><subject>Channels</subject><subject>connexin</subject><subject>Connexin 43</subject><subject>Connexin 43 - genetics</subject><subject>Connexins - genetics</subject><subject>Cortex</subject><subject>Crosstalk</subject><subject>Cyclooxygenase-2</subject><subject>Cytokines</subject><subject>Cytokines - metabolism</subject><subject>Cytosol</subject><subject>Dementia disorders</subject><subject>glia</subject><subject>Glial cells</subject><subject>Glutamatergic transmission</subject><subject>Inclusion bodies</subject><subject>Inclusions</subject><subject>Intracellular signalling</subject><subject>Kinases</subject><subject>Lewy bodies</subject><subject>MAP kinase</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - ultrastructure</subject><subject>Morphology</subject><subject>Movement disorders</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Neurodegenerative diseases</subject><subject>neuroinflammation</subject><subject>Neuronal-glial interactions</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - biosynthesis</subject><subject>Nitric-oxide synthase</subject><subject>pannexin</subject><subject>Parkinson's disease</subject><subject>Pathogenesis</subject><subject>RNA, Small Interfering - genetics</subject><subject>Synuclein</subject><subject>α‐synucleinopathies</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90UFq3DAUBmBRWppJ0k0PUATdlIITPUm27GUYmjQw0E27NhrpuaPgkSaWTOJde4NcJRfJIXqSKOM0iy66EtL79PPgJ-Q9sBNgjJ_-7J0-4aIS8IosgDV1ASCq12TB6kYWIBs4IIcxXjEG-aLekgMBTAgm6gX5vQze463zVAq6wa0zG50f-ki1t3Sn5-GfX3dAXyYm-DS49ZiQpkDTBunDfRZx8qPpca-dt6NBS-0Uu9Gb5ILfB1rUaUNDR3VMQzBTwnhM3nS6j_ju-TwiP86_fF9-LVbfLi6XZ6vCiFJBUdaKq66SXHJtK9tZwM7WyholjNRlqWXV1LVo1BqY1qXkqGpZysaizB_XjTgin-bc3RCuR4yp3bposO-1xzDGlnOolMr5LNOP_9CrMA4-b5eVUFJwpnhWn2dlhhDjgF27G9xWD1MLrH0qpn0qpt0Xk_GH58hxvUX7Qv82kQHM4Mb1OP0nqr1YXZ7NoY9NPJxp</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Díaz, Esteban F.</creator><creator>Labra, Valeria C.</creator><creator>Alvear, Tanhia F.</creator><creator>Mellado, Luis A.</creator><creator>Inostroza, Carla A.</creator><creator>Oyarzún, Juan E.</creator><creator>Salgado, Nicole</creator><creator>Quintanilla, Rodrigo A.</creator><creator>Orellana, Juan A.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4076-207X</orcidid></search><sort><creationdate>201908</creationdate><title>Connexin 43 hemichannels and pannexin‐1 channels contribute to the α‐synuclein‐induced dysfunction and death of astrocytes</title><author>Díaz, Esteban F. ; Labra, Valeria C. ; Alvear, Tanhia F. ; Mellado, Luis A. ; Inostroza, Carla A. ; Oyarzún, Juan E. ; Salgado, Nicole ; Quintanilla, Rodrigo A. ; Orellana, Juan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-58727f64242ad6dfd1efd87dc73c4a55a46988397b10aa542e784549de4727b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>alpha-Synuclein - genetics</topic><topic>Animals</topic><topic>Astrocytes</topic><topic>Astrocytes - pathology</topic><topic>Calcium (intracellular)</topic><topic>Calcium Channels - genetics</topic><topic>Calcium Channels - metabolism</topic><topic>Calcium ions</topic><topic>Calcium oxide</topic><topic>Calcium signalling</topic><topic>Cell Communication - genetics</topic><topic>Cell Death - genetics</topic><topic>Cells, Cultured</topic><topic>Channels</topic><topic>connexin</topic><topic>Connexin 43</topic><topic>Connexin 43 - genetics</topic><topic>Connexins - genetics</topic><topic>Cortex</topic><topic>Crosstalk</topic><topic>Cyclooxygenase-2</topic><topic>Cytokines</topic><topic>Cytokines - metabolism</topic><topic>Cytosol</topic><topic>Dementia disorders</topic><topic>glia</topic><topic>Glial cells</topic><topic>Glutamatergic transmission</topic><topic>Inclusion bodies</topic><topic>Inclusions</topic><topic>Intracellular signalling</topic><topic>Kinases</topic><topic>Lewy bodies</topic><topic>MAP kinase</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - ultrastructure</topic><topic>Morphology</topic><topic>Movement disorders</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Neurodegenerative diseases</topic><topic>neuroinflammation</topic><topic>Neuronal-glial interactions</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - biosynthesis</topic><topic>Nitric-oxide synthase</topic><topic>pannexin</topic><topic>Parkinson's disease</topic><topic>Pathogenesis</topic><topic>RNA, Small Interfering - genetics</topic><topic>Synuclein</topic><topic>α‐synucleinopathies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díaz, Esteban F.</creatorcontrib><creatorcontrib>Labra, Valeria C.</creatorcontrib><creatorcontrib>Alvear, Tanhia F.</creatorcontrib><creatorcontrib>Mellado, Luis A.</creatorcontrib><creatorcontrib>Inostroza, Carla A.</creatorcontrib><creatorcontrib>Oyarzún, Juan E.</creatorcontrib><creatorcontrib>Salgado, Nicole</creatorcontrib><creatorcontrib>Quintanilla, Rodrigo A.</creatorcontrib><creatorcontrib>Orellana, Juan A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díaz, Esteban F.</au><au>Labra, Valeria C.</au><au>Alvear, Tanhia F.</au><au>Mellado, Luis A.</au><au>Inostroza, Carla A.</au><au>Oyarzún, Juan E.</au><au>Salgado, Nicole</au><au>Quintanilla, Rodrigo A.</au><au>Orellana, Juan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connexin 43 hemichannels and pannexin‐1 channels contribute to the α‐synuclein‐induced dysfunction and death of astrocytes</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2019-08</date><risdate>2019</risdate><volume>67</volume><issue>8</issue><spage>1598</spage><epage>1619</epage><pages>1598-1619</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><abstract>Diverse studies have suggested that cytoplasmic inclusions of misfolded α‐synuclein in neuronal and glial cells are main pathological features of different α‐synucleinopathies, including Parkinson's disease and dementia with Lewy bodies. Up to now, most studies have focused on the effects of α‐synuclein on neurons, whereas the possible alterations of astrocyte functions and neuron–glia crosstalk have received minor attention. Recent evidence indicates that cellular signaling mediated by hemichannels and pannexons is critical for astroglial function and dysfunction. These channels constitute a diffusional route of communication between the cytosol and the extracellular space and during pathological scenarios they may lead to homeostatic disturbances linked to the pathogenesis and progression of different diseases. Here, we found that α‐synuclein enhances the opening of connexin 43 (Cx43) hemichannels and pannexin‐1 (Panx1) channels in mouse cortical astrocytes. This response was linked to the activation of cytokines, the p38 MAP kinase, the inducible nitric oxide synthase, cyclooxygenase 2, intracellular free Ca2+ concentration ([Ca2+]i), and purinergic and glutamatergic signaling. Relevantly, the α‐synuclein‐induced opening of hemichannels and pannexons resulted in alterations in [Ca2+]i dynamics, nitric oxide (NO) production, gliotransmitter release, mitochondrial morphology, and astrocyte survival. We propose that α‐synuclein‐mediated opening of astroglial Cx43 hemichannels and Panx1 channels might constitute a novel mechanism involved in the pathogenesis and progression of α‐synucleinopathies. Main Points α‐Synuclein activates Cx43 hemichannels and Panx1 channels in astrocytes. Opening of Cx43 hemichannels and Panx1 channels disturbs [Ca2+]i dynamics, NO production, gliotransmitter release, mitochondrial morphology, and survival of astrocytes.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31033038</pmid><doi>10.1002/glia.23631</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4076-207X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0894-1491
ispartof Glia, 2019-08, Vol.67 (8), p.1598-1619
issn 0894-1491
1098-1136
language eng
recordid cdi_proquest_miscellaneous_2216774240
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects alpha-Synuclein - genetics
Animals
Astrocytes
Astrocytes - pathology
Calcium (intracellular)
Calcium Channels - genetics
Calcium Channels - metabolism
Calcium ions
Calcium oxide
Calcium signalling
Cell Communication - genetics
Cell Death - genetics
Cells, Cultured
Channels
connexin
Connexin 43
Connexin 43 - genetics
Connexins - genetics
Cortex
Crosstalk
Cyclooxygenase-2
Cytokines
Cytokines - metabolism
Cytosol
Dementia disorders
glia
Glial cells
Glutamatergic transmission
Inclusion bodies
Inclusions
Intracellular signalling
Kinases
Lewy bodies
MAP kinase
Mice
Mitochondria
Mitochondria - genetics
Mitochondria - ultrastructure
Morphology
Movement disorders
Nerve Tissue Proteins - genetics
Neurodegenerative diseases
neuroinflammation
Neuronal-glial interactions
Neurotransmitter Agents - metabolism
Nitric oxide
Nitric Oxide - biosynthesis
Nitric-oxide synthase
pannexin
Parkinson's disease
Pathogenesis
RNA, Small Interfering - genetics
Synuclein
α‐synucleinopathies
title Connexin 43 hemichannels and pannexin‐1 channels contribute to the α‐synuclein‐induced dysfunction and death of astrocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connexin%2043%20hemichannels%20and%20pannexin%E2%80%901%20channels%20contribute%20to%20the%20%CE%B1%E2%80%90synuclein%E2%80%90induced%20dysfunction%20and%20death%20of%20astrocytes&rft.jtitle=Glia&rft.au=D%C3%ADaz,%20Esteban%20F.&rft.date=2019-08&rft.volume=67&rft.issue=8&rft.spage=1598&rft.epage=1619&rft.pages=1598-1619&rft.issn=0894-1491&rft.eissn=1098-1136&rft_id=info:doi/10.1002/glia.23631&rft_dat=%3Cproquest_cross%3E2216774240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2237432072&rft_id=info:pmid/31033038&rfr_iscdi=true