Connexin 43 hemichannels and pannexin‐1 channels contribute to the α‐synuclein‐induced dysfunction and death of astrocytes
Diverse studies have suggested that cytoplasmic inclusions of misfolded α‐synuclein in neuronal and glial cells are main pathological features of different α‐synucleinopathies, including Parkinson's disease and dementia with Lewy bodies. Up to now, most studies have focused on the effects of α‐...
Gespeichert in:
Veröffentlicht in: | Glia 2019-08, Vol.67 (8), p.1598-1619 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1619 |
---|---|
container_issue | 8 |
container_start_page | 1598 |
container_title | Glia |
container_volume | 67 |
creator | Díaz, Esteban F. Labra, Valeria C. Alvear, Tanhia F. Mellado, Luis A. Inostroza, Carla A. Oyarzún, Juan E. Salgado, Nicole Quintanilla, Rodrigo A. Orellana, Juan A. |
description | Diverse studies have suggested that cytoplasmic inclusions of misfolded α‐synuclein in neuronal and glial cells are main pathological features of different α‐synucleinopathies, including Parkinson's disease and dementia with Lewy bodies. Up to now, most studies have focused on the effects of α‐synuclein on neurons, whereas the possible alterations of astrocyte functions and neuron–glia crosstalk have received minor attention. Recent evidence indicates that cellular signaling mediated by hemichannels and pannexons is critical for astroglial function and dysfunction. These channels constitute a diffusional route of communication between the cytosol and the extracellular space and during pathological scenarios they may lead to homeostatic disturbances linked to the pathogenesis and progression of different diseases. Here, we found that α‐synuclein enhances the opening of connexin 43 (Cx43) hemichannels and pannexin‐1 (Panx1) channels in mouse cortical astrocytes. This response was linked to the activation of cytokines, the p38 MAP kinase, the inducible nitric oxide synthase, cyclooxygenase 2, intracellular free Ca2+ concentration ([Ca2+]i), and purinergic and glutamatergic signaling. Relevantly, the α‐synuclein‐induced opening of hemichannels and pannexons resulted in alterations in [Ca2+]i dynamics, nitric oxide (NO) production, gliotransmitter release, mitochondrial morphology, and astrocyte survival. We propose that α‐synuclein‐mediated opening of astroglial Cx43 hemichannels and Panx1 channels might constitute a novel mechanism involved in the pathogenesis and progression of α‐synucleinopathies.
Main Points
α‐Synuclein activates Cx43 hemichannels and Panx1 channels in astrocytes.
Opening of Cx43 hemichannels and Panx1 channels disturbs [Ca2+]i dynamics, NO production, gliotransmitter release, mitochondrial morphology, and survival of astrocytes. |
doi_str_mv | 10.1002/glia.23631 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2216774240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2216774240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-58727f64242ad6dfd1efd87dc73c4a55a46988397b10aa542e784549de4727b93</originalsourceid><addsrcrecordid>eNp90UFq3DAUBmBRWppJ0k0PUATdlIITPUm27GUYmjQw0E27NhrpuaPgkSaWTOJde4NcJRfJIXqSKOM0iy66EtL79PPgJ-Q9sBNgjJ_-7J0-4aIS8IosgDV1ASCq12TB6kYWIBs4IIcxXjEG-aLekgMBTAgm6gX5vQze463zVAq6wa0zG50f-ki1t3Sn5-GfX3dAXyYm-DS49ZiQpkDTBunDfRZx8qPpca-dt6NBS-0Uu9Gb5ILfB1rUaUNDR3VMQzBTwnhM3nS6j_ju-TwiP86_fF9-LVbfLi6XZ6vCiFJBUdaKq66SXHJtK9tZwM7WyholjNRlqWXV1LVo1BqY1qXkqGpZysaizB_XjTgin-bc3RCuR4yp3bposO-1xzDGlnOolMr5LNOP_9CrMA4-b5eVUFJwpnhWn2dlhhDjgF27G9xWD1MLrH0qpn0qpt0Xk_GH58hxvUX7Qv82kQHM4Mb1OP0nqr1YXZ7NoY9NPJxp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237432072</pqid></control><display><type>article</type><title>Connexin 43 hemichannels and pannexin‐1 channels contribute to the α‐synuclein‐induced dysfunction and death of astrocytes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Díaz, Esteban F. ; Labra, Valeria C. ; Alvear, Tanhia F. ; Mellado, Luis A. ; Inostroza, Carla A. ; Oyarzún, Juan E. ; Salgado, Nicole ; Quintanilla, Rodrigo A. ; Orellana, Juan A.</creator><creatorcontrib>Díaz, Esteban F. ; Labra, Valeria C. ; Alvear, Tanhia F. ; Mellado, Luis A. ; Inostroza, Carla A. ; Oyarzún, Juan E. ; Salgado, Nicole ; Quintanilla, Rodrigo A. ; Orellana, Juan A.</creatorcontrib><description>Diverse studies have suggested that cytoplasmic inclusions of misfolded α‐synuclein in neuronal and glial cells are main pathological features of different α‐synucleinopathies, including Parkinson's disease and dementia with Lewy bodies. Up to now, most studies have focused on the effects of α‐synuclein on neurons, whereas the possible alterations of astrocyte functions and neuron–glia crosstalk have received minor attention. Recent evidence indicates that cellular signaling mediated by hemichannels and pannexons is critical for astroglial function and dysfunction. These channels constitute a diffusional route of communication between the cytosol and the extracellular space and during pathological scenarios they may lead to homeostatic disturbances linked to the pathogenesis and progression of different diseases. Here, we found that α‐synuclein enhances the opening of connexin 43 (Cx43) hemichannels and pannexin‐1 (Panx1) channels in mouse cortical astrocytes. This response was linked to the activation of cytokines, the p38 MAP kinase, the inducible nitric oxide synthase, cyclooxygenase 2, intracellular free Ca2+ concentration ([Ca2+]i), and purinergic and glutamatergic signaling. Relevantly, the α‐synuclein‐induced opening of hemichannels and pannexons resulted in alterations in [Ca2+]i dynamics, nitric oxide (NO) production, gliotransmitter release, mitochondrial morphology, and astrocyte survival. We propose that α‐synuclein‐mediated opening of astroglial Cx43 hemichannels and Panx1 channels might constitute a novel mechanism involved in the pathogenesis and progression of α‐synucleinopathies.
Main Points
α‐Synuclein activates Cx43 hemichannels and Panx1 channels in astrocytes.
Opening of Cx43 hemichannels and Panx1 channels disturbs [Ca2+]i dynamics, NO production, gliotransmitter release, mitochondrial morphology, and survival of astrocytes.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.23631</identifier><identifier>PMID: 31033038</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>alpha-Synuclein - genetics ; Animals ; Astrocytes ; Astrocytes - pathology ; Calcium (intracellular) ; Calcium Channels - genetics ; Calcium Channels - metabolism ; Calcium ions ; Calcium oxide ; Calcium signalling ; Cell Communication - genetics ; Cell Death - genetics ; Cells, Cultured ; Channels ; connexin ; Connexin 43 ; Connexin 43 - genetics ; Connexins - genetics ; Cortex ; Crosstalk ; Cyclooxygenase-2 ; Cytokines ; Cytokines - metabolism ; Cytosol ; Dementia disorders ; glia ; Glial cells ; Glutamatergic transmission ; Inclusion bodies ; Inclusions ; Intracellular signalling ; Kinases ; Lewy bodies ; MAP kinase ; Mice ; Mitochondria ; Mitochondria - genetics ; Mitochondria - ultrastructure ; Morphology ; Movement disorders ; Nerve Tissue Proteins - genetics ; Neurodegenerative diseases ; neuroinflammation ; Neuronal-glial interactions ; Neurotransmitter Agents - metabolism ; Nitric oxide ; Nitric Oxide - biosynthesis ; Nitric-oxide synthase ; pannexin ; Parkinson's disease ; Pathogenesis ; RNA, Small Interfering - genetics ; Synuclein ; α‐synucleinopathies</subject><ispartof>Glia, 2019-08, Vol.67 (8), p.1598-1619</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-58727f64242ad6dfd1efd87dc73c4a55a46988397b10aa542e784549de4727b93</citedby><cites>FETCH-LOGICAL-c3571-58727f64242ad6dfd1efd87dc73c4a55a46988397b10aa542e784549de4727b93</cites><orcidid>0000-0003-4076-207X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.23631$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.23631$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31033038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Díaz, Esteban F.</creatorcontrib><creatorcontrib>Labra, Valeria C.</creatorcontrib><creatorcontrib>Alvear, Tanhia F.</creatorcontrib><creatorcontrib>Mellado, Luis A.</creatorcontrib><creatorcontrib>Inostroza, Carla A.</creatorcontrib><creatorcontrib>Oyarzún, Juan E.</creatorcontrib><creatorcontrib>Salgado, Nicole</creatorcontrib><creatorcontrib>Quintanilla, Rodrigo A.</creatorcontrib><creatorcontrib>Orellana, Juan A.</creatorcontrib><title>Connexin 43 hemichannels and pannexin‐1 channels contribute to the α‐synuclein‐induced dysfunction and death of astrocytes</title><title>Glia</title><addtitle>Glia</addtitle><description>Diverse studies have suggested that cytoplasmic inclusions of misfolded α‐synuclein in neuronal and glial cells are main pathological features of different α‐synucleinopathies, including Parkinson's disease and dementia with Lewy bodies. Up to now, most studies have focused on the effects of α‐synuclein on neurons, whereas the possible alterations of astrocyte functions and neuron–glia crosstalk have received minor attention. Recent evidence indicates that cellular signaling mediated by hemichannels and pannexons is critical for astroglial function and dysfunction. These channels constitute a diffusional route of communication between the cytosol and the extracellular space and during pathological scenarios they may lead to homeostatic disturbances linked to the pathogenesis and progression of different diseases. Here, we found that α‐synuclein enhances the opening of connexin 43 (Cx43) hemichannels and pannexin‐1 (Panx1) channels in mouse cortical astrocytes. This response was linked to the activation of cytokines, the p38 MAP kinase, the inducible nitric oxide synthase, cyclooxygenase 2, intracellular free Ca2+ concentration ([Ca2+]i), and purinergic and glutamatergic signaling. Relevantly, the α‐synuclein‐induced opening of hemichannels and pannexons resulted in alterations in [Ca2+]i dynamics, nitric oxide (NO) production, gliotransmitter release, mitochondrial morphology, and astrocyte survival. We propose that α‐synuclein‐mediated opening of astroglial Cx43 hemichannels and Panx1 channels might constitute a novel mechanism involved in the pathogenesis and progression of α‐synucleinopathies.
Main Points
α‐Synuclein activates Cx43 hemichannels and Panx1 channels in astrocytes.
Opening of Cx43 hemichannels and Panx1 channels disturbs [Ca2+]i dynamics, NO production, gliotransmitter release, mitochondrial morphology, and survival of astrocytes.</description><subject>alpha-Synuclein - genetics</subject><subject>Animals</subject><subject>Astrocytes</subject><subject>Astrocytes - pathology</subject><subject>Calcium (intracellular)</subject><subject>Calcium Channels - genetics</subject><subject>Calcium Channels - metabolism</subject><subject>Calcium ions</subject><subject>Calcium oxide</subject><subject>Calcium signalling</subject><subject>Cell Communication - genetics</subject><subject>Cell Death - genetics</subject><subject>Cells, Cultured</subject><subject>Channels</subject><subject>connexin</subject><subject>Connexin 43</subject><subject>Connexin 43 - genetics</subject><subject>Connexins - genetics</subject><subject>Cortex</subject><subject>Crosstalk</subject><subject>Cyclooxygenase-2</subject><subject>Cytokines</subject><subject>Cytokines - metabolism</subject><subject>Cytosol</subject><subject>Dementia disorders</subject><subject>glia</subject><subject>Glial cells</subject><subject>Glutamatergic transmission</subject><subject>Inclusion bodies</subject><subject>Inclusions</subject><subject>Intracellular signalling</subject><subject>Kinases</subject><subject>Lewy bodies</subject><subject>MAP kinase</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - ultrastructure</subject><subject>Morphology</subject><subject>Movement disorders</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Neurodegenerative diseases</subject><subject>neuroinflammation</subject><subject>Neuronal-glial interactions</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - biosynthesis</subject><subject>Nitric-oxide synthase</subject><subject>pannexin</subject><subject>Parkinson's disease</subject><subject>Pathogenesis</subject><subject>RNA, Small Interfering - genetics</subject><subject>Synuclein</subject><subject>α‐synucleinopathies</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90UFq3DAUBmBRWppJ0k0PUATdlIITPUm27GUYmjQw0E27NhrpuaPgkSaWTOJde4NcJRfJIXqSKOM0iy66EtL79PPgJ-Q9sBNgjJ_-7J0-4aIS8IosgDV1ASCq12TB6kYWIBs4IIcxXjEG-aLekgMBTAgm6gX5vQze463zVAq6wa0zG50f-ki1t3Sn5-GfX3dAXyYm-DS49ZiQpkDTBunDfRZx8qPpca-dt6NBS-0Uu9Gb5ILfB1rUaUNDR3VMQzBTwnhM3nS6j_ju-TwiP86_fF9-LVbfLi6XZ6vCiFJBUdaKq66SXHJtK9tZwM7WyholjNRlqWXV1LVo1BqY1qXkqGpZysaizB_XjTgin-bc3RCuR4yp3bposO-1xzDGlnOolMr5LNOP_9CrMA4-b5eVUFJwpnhWn2dlhhDjgF27G9xWD1MLrH0qpn0qpt0Xk_GH58hxvUX7Qv82kQHM4Mb1OP0nqr1YXZ7NoY9NPJxp</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Díaz, Esteban F.</creator><creator>Labra, Valeria C.</creator><creator>Alvear, Tanhia F.</creator><creator>Mellado, Luis A.</creator><creator>Inostroza, Carla A.</creator><creator>Oyarzún, Juan E.</creator><creator>Salgado, Nicole</creator><creator>Quintanilla, Rodrigo A.</creator><creator>Orellana, Juan A.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4076-207X</orcidid></search><sort><creationdate>201908</creationdate><title>Connexin 43 hemichannels and pannexin‐1 channels contribute to the α‐synuclein‐induced dysfunction and death of astrocytes</title><author>Díaz, Esteban F. ; Labra, Valeria C. ; Alvear, Tanhia F. ; Mellado, Luis A. ; Inostroza, Carla A. ; Oyarzún, Juan E. ; Salgado, Nicole ; Quintanilla, Rodrigo A. ; Orellana, Juan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-58727f64242ad6dfd1efd87dc73c4a55a46988397b10aa542e784549de4727b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>alpha-Synuclein - genetics</topic><topic>Animals</topic><topic>Astrocytes</topic><topic>Astrocytes - pathology</topic><topic>Calcium (intracellular)</topic><topic>Calcium Channels - genetics</topic><topic>Calcium Channels - metabolism</topic><topic>Calcium ions</topic><topic>Calcium oxide</topic><topic>Calcium signalling</topic><topic>Cell Communication - genetics</topic><topic>Cell Death - genetics</topic><topic>Cells, Cultured</topic><topic>Channels</topic><topic>connexin</topic><topic>Connexin 43</topic><topic>Connexin 43 - genetics</topic><topic>Connexins - genetics</topic><topic>Cortex</topic><topic>Crosstalk</topic><topic>Cyclooxygenase-2</topic><topic>Cytokines</topic><topic>Cytokines - metabolism</topic><topic>Cytosol</topic><topic>Dementia disorders</topic><topic>glia</topic><topic>Glial cells</topic><topic>Glutamatergic transmission</topic><topic>Inclusion bodies</topic><topic>Inclusions</topic><topic>Intracellular signalling</topic><topic>Kinases</topic><topic>Lewy bodies</topic><topic>MAP kinase</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - ultrastructure</topic><topic>Morphology</topic><topic>Movement disorders</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Neurodegenerative diseases</topic><topic>neuroinflammation</topic><topic>Neuronal-glial interactions</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - biosynthesis</topic><topic>Nitric-oxide synthase</topic><topic>pannexin</topic><topic>Parkinson's disease</topic><topic>Pathogenesis</topic><topic>RNA, Small Interfering - genetics</topic><topic>Synuclein</topic><topic>α‐synucleinopathies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díaz, Esteban F.</creatorcontrib><creatorcontrib>Labra, Valeria C.</creatorcontrib><creatorcontrib>Alvear, Tanhia F.</creatorcontrib><creatorcontrib>Mellado, Luis A.</creatorcontrib><creatorcontrib>Inostroza, Carla A.</creatorcontrib><creatorcontrib>Oyarzún, Juan E.</creatorcontrib><creatorcontrib>Salgado, Nicole</creatorcontrib><creatorcontrib>Quintanilla, Rodrigo A.</creatorcontrib><creatorcontrib>Orellana, Juan A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díaz, Esteban F.</au><au>Labra, Valeria C.</au><au>Alvear, Tanhia F.</au><au>Mellado, Luis A.</au><au>Inostroza, Carla A.</au><au>Oyarzún, Juan E.</au><au>Salgado, Nicole</au><au>Quintanilla, Rodrigo A.</au><au>Orellana, Juan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connexin 43 hemichannels and pannexin‐1 channels contribute to the α‐synuclein‐induced dysfunction and death of astrocytes</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2019-08</date><risdate>2019</risdate><volume>67</volume><issue>8</issue><spage>1598</spage><epage>1619</epage><pages>1598-1619</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><abstract>Diverse studies have suggested that cytoplasmic inclusions of misfolded α‐synuclein in neuronal and glial cells are main pathological features of different α‐synucleinopathies, including Parkinson's disease and dementia with Lewy bodies. Up to now, most studies have focused on the effects of α‐synuclein on neurons, whereas the possible alterations of astrocyte functions and neuron–glia crosstalk have received minor attention. Recent evidence indicates that cellular signaling mediated by hemichannels and pannexons is critical for astroglial function and dysfunction. These channels constitute a diffusional route of communication between the cytosol and the extracellular space and during pathological scenarios they may lead to homeostatic disturbances linked to the pathogenesis and progression of different diseases. Here, we found that α‐synuclein enhances the opening of connexin 43 (Cx43) hemichannels and pannexin‐1 (Panx1) channels in mouse cortical astrocytes. This response was linked to the activation of cytokines, the p38 MAP kinase, the inducible nitric oxide synthase, cyclooxygenase 2, intracellular free Ca2+ concentration ([Ca2+]i), and purinergic and glutamatergic signaling. Relevantly, the α‐synuclein‐induced opening of hemichannels and pannexons resulted in alterations in [Ca2+]i dynamics, nitric oxide (NO) production, gliotransmitter release, mitochondrial morphology, and astrocyte survival. We propose that α‐synuclein‐mediated opening of astroglial Cx43 hemichannels and Panx1 channels might constitute a novel mechanism involved in the pathogenesis and progression of α‐synucleinopathies.
Main Points
α‐Synuclein activates Cx43 hemichannels and Panx1 channels in astrocytes.
Opening of Cx43 hemichannels and Panx1 channels disturbs [Ca2+]i dynamics, NO production, gliotransmitter release, mitochondrial morphology, and survival of astrocytes.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31033038</pmid><doi>10.1002/glia.23631</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4076-207X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1491 |
ispartof | Glia, 2019-08, Vol.67 (8), p.1598-1619 |
issn | 0894-1491 1098-1136 |
language | eng |
recordid | cdi_proquest_miscellaneous_2216774240 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | alpha-Synuclein - genetics Animals Astrocytes Astrocytes - pathology Calcium (intracellular) Calcium Channels - genetics Calcium Channels - metabolism Calcium ions Calcium oxide Calcium signalling Cell Communication - genetics Cell Death - genetics Cells, Cultured Channels connexin Connexin 43 Connexin 43 - genetics Connexins - genetics Cortex Crosstalk Cyclooxygenase-2 Cytokines Cytokines - metabolism Cytosol Dementia disorders glia Glial cells Glutamatergic transmission Inclusion bodies Inclusions Intracellular signalling Kinases Lewy bodies MAP kinase Mice Mitochondria Mitochondria - genetics Mitochondria - ultrastructure Morphology Movement disorders Nerve Tissue Proteins - genetics Neurodegenerative diseases neuroinflammation Neuronal-glial interactions Neurotransmitter Agents - metabolism Nitric oxide Nitric Oxide - biosynthesis Nitric-oxide synthase pannexin Parkinson's disease Pathogenesis RNA, Small Interfering - genetics Synuclein α‐synucleinopathies |
title | Connexin 43 hemichannels and pannexin‐1 channels contribute to the α‐synuclein‐induced dysfunction and death of astrocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connexin%2043%20hemichannels%20and%20pannexin%E2%80%901%20channels%20contribute%20to%20the%20%CE%B1%E2%80%90synuclein%E2%80%90induced%20dysfunction%20and%20death%20of%20astrocytes&rft.jtitle=Glia&rft.au=D%C3%ADaz,%20Esteban%20F.&rft.date=2019-08&rft.volume=67&rft.issue=8&rft.spage=1598&rft.epage=1619&rft.pages=1598-1619&rft.issn=0894-1491&rft.eissn=1098-1136&rft_id=info:doi/10.1002/glia.23631&rft_dat=%3Cproquest_cross%3E2216774240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2237432072&rft_id=info:pmid/31033038&rfr_iscdi=true |