TMEM173 Alternative Spliced Isoforms Modulate Viral Replication through the STING Pathway

The innate immune system provides a primary line of defense against pathogens. Stimulator of IFN genes (STING), encoded by the TMEM173 gene, is a critical protein involved in IFN-β induction in response to infection by different pathogens. In this study, we describe the expression of three different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ImmunoHorizons 2018-12, Vol.2 (11), p.363-376
Hauptverfasser: Rodríguez-García, Estefanía, Olagüe, Cristina, Ríus-Rocabert, Sergio, Ferrero, Roberto, Llorens, Carlos, Larrea, Esther, Fortes, Puri, Prieto, Jesús, González-Aseguinolaza, Gloria, Nistal-Villan, Estanislao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 376
container_issue 11
container_start_page 363
container_title ImmunoHorizons
container_volume 2
creator Rodríguez-García, Estefanía
Olagüe, Cristina
Ríus-Rocabert, Sergio
Ferrero, Roberto
Llorens, Carlos
Larrea, Esther
Fortes, Puri
Prieto, Jesús
González-Aseguinolaza, Gloria
Nistal-Villan, Estanislao
description The innate immune system provides a primary line of defense against pathogens. Stimulator of IFN genes (STING), encoded by the TMEM173 gene, is a critical protein involved in IFN-β induction in response to infection by different pathogens. In this study, we describe the expression of three different alternative-spliced human (h) TMEM173 mRNAs producing STING truncated isoforms 1, 2, and 3 in addition to the full-length wild-type (wt) hSTING. All of the truncated isoforms lack exon 7 and share the N-terminal transmembrane region with wt hSTING. Overexpression of the three STING truncated isoforms failed to induce IFN-β, and they acted as selective pathway inhibitors of wt hSTING even in combination with upstream inducer cyclic-di-GMP-AMP synthase. Truncated isoforms alter the stability of wt hSTING, reducing protein to some extent by the induction of proteasome-dependent degradation. Knocking down expression of truncated isoforms increased production of IFN-β by THP1 monocytes in response to intracellular cytosolic DNA or HSV-1 infection. At early stages of infection, viruses like HSV-1 or vesicular stomatitis virus reduced the ratio of full-length wt hSTING/truncated STING isoforms, suggesting the skewing of alternative splicing of STING toward truncated forms as a tactic to evade antiviral responses. Finally, in silico analysis revealed that the human intron-exon gene architecture of TMEM173 (splice sites included) is preserved in other mammal species, predominantly primates, stressing the relevance of alternative splicing in regulating STING antiviral biology.
doi_str_mv 10.4049/immunohorizons.1800068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2216296239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2216296239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2748-fea71a4f624f2389a0f67f9840390628201dd2938df886cbafdf263f4e4ba0d13</originalsourceid><addsrcrecordid>eNpVkF1PwjAYhRujEYL8BdJLb4b9su0uCUElATWKJl4tZW1dzbZiu2nw1zsCGr0678Vzzps8AIwwGjPE0gtXVW3tCx_cl6_jGEuEEJdHoE8uBU2EoOT4z90DwxjfOoRghgRlp6BHMSJcItEHL6vlbIkFhZOyMaFWjfsw8HFTutxoOI_e-lBFuPS6LVVj4LMLqoQPZgd0rK9hUwTfvhZddr3V_PYa3qum-FTbM3BiVRnN8JAD8HQ1W01vksXd9Xw6WSQ5EUwm1iiBFbOcMEuoTBWyXNhUMkRTxIkkCGtNUiq1lZLna2W1JZxaZthaIY3pAJzvdzfBv7cmNlnlYm7KUtXGtzEjBHOSckLTDuV7NA8-xmBstgmuUmGbYZTtzGb_zWYHs11xdPjRriujf2s_Huk3JNt4cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216296239</pqid></control><display><type>article</type><title>TMEM173 Alternative Spliced Isoforms Modulate Viral Replication through the STING Pathway</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><creator>Rodríguez-García, Estefanía ; Olagüe, Cristina ; Ríus-Rocabert, Sergio ; Ferrero, Roberto ; Llorens, Carlos ; Larrea, Esther ; Fortes, Puri ; Prieto, Jesús ; González-Aseguinolaza, Gloria ; Nistal-Villan, Estanislao</creator><creatorcontrib>Rodríguez-García, Estefanía ; Olagüe, Cristina ; Ríus-Rocabert, Sergio ; Ferrero, Roberto ; Llorens, Carlos ; Larrea, Esther ; Fortes, Puri ; Prieto, Jesús ; González-Aseguinolaza, Gloria ; Nistal-Villan, Estanislao</creatorcontrib><description>The innate immune system provides a primary line of defense against pathogens. Stimulator of IFN genes (STING), encoded by the TMEM173 gene, is a critical protein involved in IFN-β induction in response to infection by different pathogens. In this study, we describe the expression of three different alternative-spliced human (h) TMEM173 mRNAs producing STING truncated isoforms 1, 2, and 3 in addition to the full-length wild-type (wt) hSTING. All of the truncated isoforms lack exon 7 and share the N-terminal transmembrane region with wt hSTING. Overexpression of the three STING truncated isoforms failed to induce IFN-β, and they acted as selective pathway inhibitors of wt hSTING even in combination with upstream inducer cyclic-di-GMP-AMP synthase. Truncated isoforms alter the stability of wt hSTING, reducing protein to some extent by the induction of proteasome-dependent degradation. Knocking down expression of truncated isoforms increased production of IFN-β by THP1 monocytes in response to intracellular cytosolic DNA or HSV-1 infection. At early stages of infection, viruses like HSV-1 or vesicular stomatitis virus reduced the ratio of full-length wt hSTING/truncated STING isoforms, suggesting the skewing of alternative splicing of STING toward truncated forms as a tactic to evade antiviral responses. Finally, in silico analysis revealed that the human intron-exon gene architecture of TMEM173 (splice sites included) is preserved in other mammal species, predominantly primates, stressing the relevance of alternative splicing in regulating STING antiviral biology.</description><identifier>ISSN: 2573-7732</identifier><identifier>EISSN: 2573-7732</identifier><identifier>DOI: 10.4049/immunohorizons.1800068</identifier><identifier>PMID: 31026807</identifier><language>eng</language><publisher>United States</publisher><subject>Alternative Splicing - immunology ; Animals ; Chlorocebus aethiops ; Computer Simulation ; HEK293 Cells ; HeLa Cells ; Herpesvirus 1, Human - genetics ; Herpesvirus 1, Human - immunology ; Humans ; Immunity, Innate ; Interferon-beta - immunology ; Membrane Proteins - biosynthesis ; Membrane Proteins - genetics ; Membrane Proteins - immunology ; Monocytes - immunology ; Protein Isoforms ; RNA, Messenger - genetics ; RNA, Small Interfering - genetics ; Vero Cells ; Vesicular stomatitis Indiana virus - genetics ; Vesicular stomatitis Indiana virus - immunology ; Vesicular stomatitis Indiana virus - physiology ; Virus Diseases - genetics ; Virus Diseases - immunology ; Virus Replication - genetics ; Virus Replication - immunology</subject><ispartof>ImmunoHorizons, 2018-12, Vol.2 (11), p.363-376</ispartof><rights>Copyright © 2018 The Authors.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2748-fea71a4f624f2389a0f67f9840390628201dd2938df886cbafdf263f4e4ba0d13</citedby><cites>FETCH-LOGICAL-c2748-fea71a4f624f2389a0f67f9840390628201dd2938df886cbafdf263f4e4ba0d13</cites><orcidid>0000-0003-2458-8833 ; 0000-0002-1600-4562 ; 0000-0001-7571-6220 ; 0000-0002-7015-4844 ; 0000-0002-1443-6513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31026807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez-García, Estefanía</creatorcontrib><creatorcontrib>Olagüe, Cristina</creatorcontrib><creatorcontrib>Ríus-Rocabert, Sergio</creatorcontrib><creatorcontrib>Ferrero, Roberto</creatorcontrib><creatorcontrib>Llorens, Carlos</creatorcontrib><creatorcontrib>Larrea, Esther</creatorcontrib><creatorcontrib>Fortes, Puri</creatorcontrib><creatorcontrib>Prieto, Jesús</creatorcontrib><creatorcontrib>González-Aseguinolaza, Gloria</creatorcontrib><creatorcontrib>Nistal-Villan, Estanislao</creatorcontrib><title>TMEM173 Alternative Spliced Isoforms Modulate Viral Replication through the STING Pathway</title><title>ImmunoHorizons</title><addtitle>Immunohorizons</addtitle><description>The innate immune system provides a primary line of defense against pathogens. Stimulator of IFN genes (STING), encoded by the TMEM173 gene, is a critical protein involved in IFN-β induction in response to infection by different pathogens. In this study, we describe the expression of three different alternative-spliced human (h) TMEM173 mRNAs producing STING truncated isoforms 1, 2, and 3 in addition to the full-length wild-type (wt) hSTING. All of the truncated isoforms lack exon 7 and share the N-terminal transmembrane region with wt hSTING. Overexpression of the three STING truncated isoforms failed to induce IFN-β, and they acted as selective pathway inhibitors of wt hSTING even in combination with upstream inducer cyclic-di-GMP-AMP synthase. Truncated isoforms alter the stability of wt hSTING, reducing protein to some extent by the induction of proteasome-dependent degradation. Knocking down expression of truncated isoforms increased production of IFN-β by THP1 monocytes in response to intracellular cytosolic DNA or HSV-1 infection. At early stages of infection, viruses like HSV-1 or vesicular stomatitis virus reduced the ratio of full-length wt hSTING/truncated STING isoforms, suggesting the skewing of alternative splicing of STING toward truncated forms as a tactic to evade antiviral responses. Finally, in silico analysis revealed that the human intron-exon gene architecture of TMEM173 (splice sites included) is preserved in other mammal species, predominantly primates, stressing the relevance of alternative splicing in regulating STING antiviral biology.</description><subject>Alternative Splicing - immunology</subject><subject>Animals</subject><subject>Chlorocebus aethiops</subject><subject>Computer Simulation</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Herpesvirus 1, Human - genetics</subject><subject>Herpesvirus 1, Human - immunology</subject><subject>Humans</subject><subject>Immunity, Innate</subject><subject>Interferon-beta - immunology</subject><subject>Membrane Proteins - biosynthesis</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - immunology</subject><subject>Monocytes - immunology</subject><subject>Protein Isoforms</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Small Interfering - genetics</subject><subject>Vero Cells</subject><subject>Vesicular stomatitis Indiana virus - genetics</subject><subject>Vesicular stomatitis Indiana virus - immunology</subject><subject>Vesicular stomatitis Indiana virus - physiology</subject><subject>Virus Diseases - genetics</subject><subject>Virus Diseases - immunology</subject><subject>Virus Replication - genetics</subject><subject>Virus Replication - immunology</subject><issn>2573-7732</issn><issn>2573-7732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkF1PwjAYhRujEYL8BdJLb4b9su0uCUElATWKJl4tZW1dzbZiu2nw1zsCGr0678Vzzps8AIwwGjPE0gtXVW3tCx_cl6_jGEuEEJdHoE8uBU2EoOT4z90DwxjfOoRghgRlp6BHMSJcItEHL6vlbIkFhZOyMaFWjfsw8HFTutxoOI_e-lBFuPS6LVVj4LMLqoQPZgd0rK9hUwTfvhZddr3V_PYa3qum-FTbM3BiVRnN8JAD8HQ1W01vksXd9Xw6WSQ5EUwm1iiBFbOcMEuoTBWyXNhUMkRTxIkkCGtNUiq1lZLna2W1JZxaZthaIY3pAJzvdzfBv7cmNlnlYm7KUtXGtzEjBHOSckLTDuV7NA8-xmBstgmuUmGbYZTtzGb_zWYHs11xdPjRriujf2s_Huk3JNt4cg</recordid><startdate>20181211</startdate><enddate>20181211</enddate><creator>Rodríguez-García, Estefanía</creator><creator>Olagüe, Cristina</creator><creator>Ríus-Rocabert, Sergio</creator><creator>Ferrero, Roberto</creator><creator>Llorens, Carlos</creator><creator>Larrea, Esther</creator><creator>Fortes, Puri</creator><creator>Prieto, Jesús</creator><creator>González-Aseguinolaza, Gloria</creator><creator>Nistal-Villan, Estanislao</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2458-8833</orcidid><orcidid>https://orcid.org/0000-0002-1600-4562</orcidid><orcidid>https://orcid.org/0000-0001-7571-6220</orcidid><orcidid>https://orcid.org/0000-0002-7015-4844</orcidid><orcidid>https://orcid.org/0000-0002-1443-6513</orcidid></search><sort><creationdate>20181211</creationdate><title>TMEM173 Alternative Spliced Isoforms Modulate Viral Replication through the STING Pathway</title><author>Rodríguez-García, Estefanía ; Olagüe, Cristina ; Ríus-Rocabert, Sergio ; Ferrero, Roberto ; Llorens, Carlos ; Larrea, Esther ; Fortes, Puri ; Prieto, Jesús ; González-Aseguinolaza, Gloria ; Nistal-Villan, Estanislao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2748-fea71a4f624f2389a0f67f9840390628201dd2938df886cbafdf263f4e4ba0d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alternative Splicing - immunology</topic><topic>Animals</topic><topic>Chlorocebus aethiops</topic><topic>Computer Simulation</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Herpesvirus 1, Human - genetics</topic><topic>Herpesvirus 1, Human - immunology</topic><topic>Humans</topic><topic>Immunity, Innate</topic><topic>Interferon-beta - immunology</topic><topic>Membrane Proteins - biosynthesis</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - immunology</topic><topic>Monocytes - immunology</topic><topic>Protein Isoforms</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Small Interfering - genetics</topic><topic>Vero Cells</topic><topic>Vesicular stomatitis Indiana virus - genetics</topic><topic>Vesicular stomatitis Indiana virus - immunology</topic><topic>Vesicular stomatitis Indiana virus - physiology</topic><topic>Virus Diseases - genetics</topic><topic>Virus Diseases - immunology</topic><topic>Virus Replication - genetics</topic><topic>Virus Replication - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-García, Estefanía</creatorcontrib><creatorcontrib>Olagüe, Cristina</creatorcontrib><creatorcontrib>Ríus-Rocabert, Sergio</creatorcontrib><creatorcontrib>Ferrero, Roberto</creatorcontrib><creatorcontrib>Llorens, Carlos</creatorcontrib><creatorcontrib>Larrea, Esther</creatorcontrib><creatorcontrib>Fortes, Puri</creatorcontrib><creatorcontrib>Prieto, Jesús</creatorcontrib><creatorcontrib>González-Aseguinolaza, Gloria</creatorcontrib><creatorcontrib>Nistal-Villan, Estanislao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ImmunoHorizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-García, Estefanía</au><au>Olagüe, Cristina</au><au>Ríus-Rocabert, Sergio</au><au>Ferrero, Roberto</au><au>Llorens, Carlos</au><au>Larrea, Esther</au><au>Fortes, Puri</au><au>Prieto, Jesús</au><au>González-Aseguinolaza, Gloria</au><au>Nistal-Villan, Estanislao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TMEM173 Alternative Spliced Isoforms Modulate Viral Replication through the STING Pathway</atitle><jtitle>ImmunoHorizons</jtitle><addtitle>Immunohorizons</addtitle><date>2018-12-11</date><risdate>2018</risdate><volume>2</volume><issue>11</issue><spage>363</spage><epage>376</epage><pages>363-376</pages><issn>2573-7732</issn><eissn>2573-7732</eissn><abstract>The innate immune system provides a primary line of defense against pathogens. Stimulator of IFN genes (STING), encoded by the TMEM173 gene, is a critical protein involved in IFN-β induction in response to infection by different pathogens. In this study, we describe the expression of three different alternative-spliced human (h) TMEM173 mRNAs producing STING truncated isoforms 1, 2, and 3 in addition to the full-length wild-type (wt) hSTING. All of the truncated isoforms lack exon 7 and share the N-terminal transmembrane region with wt hSTING. Overexpression of the three STING truncated isoforms failed to induce IFN-β, and they acted as selective pathway inhibitors of wt hSTING even in combination with upstream inducer cyclic-di-GMP-AMP synthase. Truncated isoforms alter the stability of wt hSTING, reducing protein to some extent by the induction of proteasome-dependent degradation. Knocking down expression of truncated isoforms increased production of IFN-β by THP1 monocytes in response to intracellular cytosolic DNA or HSV-1 infection. At early stages of infection, viruses like HSV-1 or vesicular stomatitis virus reduced the ratio of full-length wt hSTING/truncated STING isoforms, suggesting the skewing of alternative splicing of STING toward truncated forms as a tactic to evade antiviral responses. Finally, in silico analysis revealed that the human intron-exon gene architecture of TMEM173 (splice sites included) is preserved in other mammal species, predominantly primates, stressing the relevance of alternative splicing in regulating STING antiviral biology.</abstract><cop>United States</cop><pmid>31026807</pmid><doi>10.4049/immunohorizons.1800068</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2458-8833</orcidid><orcidid>https://orcid.org/0000-0002-1600-4562</orcidid><orcidid>https://orcid.org/0000-0001-7571-6220</orcidid><orcidid>https://orcid.org/0000-0002-7015-4844</orcidid><orcidid>https://orcid.org/0000-0002-1443-6513</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2573-7732
ispartof ImmunoHorizons, 2018-12, Vol.2 (11), p.363-376
issn 2573-7732
2573-7732
language eng
recordid cdi_proquest_miscellaneous_2216296239
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection
subjects Alternative Splicing - immunology
Animals
Chlorocebus aethiops
Computer Simulation
HEK293 Cells
HeLa Cells
Herpesvirus 1, Human - genetics
Herpesvirus 1, Human - immunology
Humans
Immunity, Innate
Interferon-beta - immunology
Membrane Proteins - biosynthesis
Membrane Proteins - genetics
Membrane Proteins - immunology
Monocytes - immunology
Protein Isoforms
RNA, Messenger - genetics
RNA, Small Interfering - genetics
Vero Cells
Vesicular stomatitis Indiana virus - genetics
Vesicular stomatitis Indiana virus - immunology
Vesicular stomatitis Indiana virus - physiology
Virus Diseases - genetics
Virus Diseases - immunology
Virus Replication - genetics
Virus Replication - immunology
title TMEM173 Alternative Spliced Isoforms Modulate Viral Replication through the STING Pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A41%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TMEM173%20Alternative%20Spliced%20Isoforms%20Modulate%20Viral%20Replication%20through%20the%20STING%20Pathway&rft.jtitle=ImmunoHorizons&rft.au=Rodr%C3%ADguez-Garc%C3%ADa,%20Estefan%C3%ADa&rft.date=2018-12-11&rft.volume=2&rft.issue=11&rft.spage=363&rft.epage=376&rft.pages=363-376&rft.issn=2573-7732&rft.eissn=2573-7732&rft_id=info:doi/10.4049/immunohorizons.1800068&rft_dat=%3Cproquest_cross%3E2216296239%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216296239&rft_id=info:pmid/31026807&rfr_iscdi=true