Characterising GPCR-ligand interactions using a fragment molecular orbital-based approach
There has been fantastic progress in solving GPCR crystal structures. However, the ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited by the availability of accurate tools to explore receptor-ligand interactions. Visual inspection and molecular mechanics...
Gespeichert in:
Veröffentlicht in: | Current opinion in structural biology 2019-04, Vol.55, p.85-92 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 92 |
---|---|
container_issue | |
container_start_page | 85 |
container_title | Current opinion in structural biology |
container_volume | 55 |
creator | Heifetz, Alexander James, Tim Southey, Michelle Morao, Inaki Aldeghi, Matteo Sarrat, Laurie Fedorov, Dmitri G Bodkin, Mike J Townsend-Nicholson, Andrea |
description | There has been fantastic progress in solving GPCR crystal structures. However, the ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited by the availability of accurate tools to explore receptor-ligand interactions. Visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions. Quantum mechanical approaches (QM) are often too computationally expensive, but the fragment molecular orbital (FMO) method offers an excellent solution that combines accuracy, speed and the ability to reveal key interactions that would otherwise be hard to detect. Integration of GPCR crystallography or homology modelling with FMO reveals atomistic details of the individual contributions of each residue and water molecule towards ligand binding, including an analysis of their chemical nature. |
doi_str_mv | 10.1016/j.sbi.2019.03.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2216284583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2216284583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-df9dcde1248c3930cca6cb4189daba26f41016dd032af4b7bae30ea86de81d823</originalsourceid><addsrcrecordid>eNo9kEtLw0AQxxdRbK1-AC-So5fE2UfTzVGKVqGgiEI9LbOPtFvyqLvJwW9vaqungZn_g_kRck0ho0Dzu20Wtc8Y0CIDngGjJ2RM5axIgfPVKRlDMS1SIWA1IhcxbgEgp0KekxGnwNh0BmPyOd9gQNO54KNv1snidf6WVn6NjU18M6yHm2-bmPS_Z0zKgOvaNV1St5UzfYUhaYP2HVapxuhsgrtdaNFsLslZiVV0V8c5IR-PD-_zp3T5snie3y9Tw4XoUlsW1lhHmZCGFxyMwdxoQWVhUSPLS7F_1VrgDEuhZxodB4cyt05SKxmfkNtD7lD71bvYqdpH46oKG9f2UTFGcybFVPJBSg9SE9oYgyvVLvgaw7eioPY1aqsGompPVAFXA9HBc3OM73Xt7L_jDyH_ARCbdEk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216284583</pqid></control><display><type>article</type><title>Characterising GPCR-ligand interactions using a fragment molecular orbital-based approach</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Heifetz, Alexander ; James, Tim ; Southey, Michelle ; Morao, Inaki ; Aldeghi, Matteo ; Sarrat, Laurie ; Fedorov, Dmitri G ; Bodkin, Mike J ; Townsend-Nicholson, Andrea</creator><creatorcontrib>Heifetz, Alexander ; James, Tim ; Southey, Michelle ; Morao, Inaki ; Aldeghi, Matteo ; Sarrat, Laurie ; Fedorov, Dmitri G ; Bodkin, Mike J ; Townsend-Nicholson, Andrea</creatorcontrib><description>There has been fantastic progress in solving GPCR crystal structures. However, the ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited by the availability of accurate tools to explore receptor-ligand interactions. Visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions. Quantum mechanical approaches (QM) are often too computationally expensive, but the fragment molecular orbital (FMO) method offers an excellent solution that combines accuracy, speed and the ability to reveal key interactions that would otherwise be hard to detect. Integration of GPCR crystallography or homology modelling with FMO reveals atomistic details of the individual contributions of each residue and water molecule towards ligand binding, including an analysis of their chemical nature.</description><identifier>ISSN: 0959-440X</identifier><identifier>EISSN: 1879-033X</identifier><identifier>DOI: 10.1016/j.sbi.2019.03.021</identifier><identifier>PMID: 31022570</identifier><language>eng</language><publisher>England</publisher><subject>Drug Discovery - methods ; Humans ; Ligands ; Models, Molecular ; Protein Binding ; Protein Conformation ; Quantum Theory ; Receptors, G-Protein-Coupled - chemistry ; Receptors, G-Protein-Coupled - metabolism</subject><ispartof>Current opinion in structural biology, 2019-04, Vol.55, p.85-92</ispartof><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-df9dcde1248c3930cca6cb4189daba26f41016dd032af4b7bae30ea86de81d823</citedby><cites>FETCH-LOGICAL-c344t-df9dcde1248c3930cca6cb4189daba26f41016dd032af4b7bae30ea86de81d823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31022570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heifetz, Alexander</creatorcontrib><creatorcontrib>James, Tim</creatorcontrib><creatorcontrib>Southey, Michelle</creatorcontrib><creatorcontrib>Morao, Inaki</creatorcontrib><creatorcontrib>Aldeghi, Matteo</creatorcontrib><creatorcontrib>Sarrat, Laurie</creatorcontrib><creatorcontrib>Fedorov, Dmitri G</creatorcontrib><creatorcontrib>Bodkin, Mike J</creatorcontrib><creatorcontrib>Townsend-Nicholson, Andrea</creatorcontrib><title>Characterising GPCR-ligand interactions using a fragment molecular orbital-based approach</title><title>Current opinion in structural biology</title><addtitle>Curr Opin Struct Biol</addtitle><description>There has been fantastic progress in solving GPCR crystal structures. However, the ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited by the availability of accurate tools to explore receptor-ligand interactions. Visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions. Quantum mechanical approaches (QM) are often too computationally expensive, but the fragment molecular orbital (FMO) method offers an excellent solution that combines accuracy, speed and the ability to reveal key interactions that would otherwise be hard to detect. Integration of GPCR crystallography or homology modelling with FMO reveals atomistic details of the individual contributions of each residue and water molecule towards ligand binding, including an analysis of their chemical nature.</description><subject>Drug Discovery - methods</subject><subject>Humans</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Quantum Theory</subject><subject>Receptors, G-Protein-Coupled - chemistry</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><issn>0959-440X</issn><issn>1879-033X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtLw0AQxxdRbK1-AC-So5fE2UfTzVGKVqGgiEI9LbOPtFvyqLvJwW9vaqungZn_g_kRck0ho0Dzu20Wtc8Y0CIDngGjJ2RM5axIgfPVKRlDMS1SIWA1IhcxbgEgp0KekxGnwNh0BmPyOd9gQNO54KNv1snidf6WVn6NjU18M6yHm2-bmPS_Z0zKgOvaNV1St5UzfYUhaYP2HVapxuhsgrtdaNFsLslZiVV0V8c5IR-PD-_zp3T5snie3y9Tw4XoUlsW1lhHmZCGFxyMwdxoQWVhUSPLS7F_1VrgDEuhZxodB4cyt05SKxmfkNtD7lD71bvYqdpH46oKG9f2UTFGcybFVPJBSg9SE9oYgyvVLvgaw7eioPY1aqsGompPVAFXA9HBc3OM73Xt7L_jDyH_ARCbdEk</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Heifetz, Alexander</creator><creator>James, Tim</creator><creator>Southey, Michelle</creator><creator>Morao, Inaki</creator><creator>Aldeghi, Matteo</creator><creator>Sarrat, Laurie</creator><creator>Fedorov, Dmitri G</creator><creator>Bodkin, Mike J</creator><creator>Townsend-Nicholson, Andrea</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201904</creationdate><title>Characterising GPCR-ligand interactions using a fragment molecular orbital-based approach</title><author>Heifetz, Alexander ; James, Tim ; Southey, Michelle ; Morao, Inaki ; Aldeghi, Matteo ; Sarrat, Laurie ; Fedorov, Dmitri G ; Bodkin, Mike J ; Townsend-Nicholson, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-df9dcde1248c3930cca6cb4189daba26f41016dd032af4b7bae30ea86de81d823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Drug Discovery - methods</topic><topic>Humans</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Quantum Theory</topic><topic>Receptors, G-Protein-Coupled - chemistry</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heifetz, Alexander</creatorcontrib><creatorcontrib>James, Tim</creatorcontrib><creatorcontrib>Southey, Michelle</creatorcontrib><creatorcontrib>Morao, Inaki</creatorcontrib><creatorcontrib>Aldeghi, Matteo</creatorcontrib><creatorcontrib>Sarrat, Laurie</creatorcontrib><creatorcontrib>Fedorov, Dmitri G</creatorcontrib><creatorcontrib>Bodkin, Mike J</creatorcontrib><creatorcontrib>Townsend-Nicholson, Andrea</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current opinion in structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heifetz, Alexander</au><au>James, Tim</au><au>Southey, Michelle</au><au>Morao, Inaki</au><au>Aldeghi, Matteo</au><au>Sarrat, Laurie</au><au>Fedorov, Dmitri G</au><au>Bodkin, Mike J</au><au>Townsend-Nicholson, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterising GPCR-ligand interactions using a fragment molecular orbital-based approach</atitle><jtitle>Current opinion in structural biology</jtitle><addtitle>Curr Opin Struct Biol</addtitle><date>2019-04</date><risdate>2019</risdate><volume>55</volume><spage>85</spage><epage>92</epage><pages>85-92</pages><issn>0959-440X</issn><eissn>1879-033X</eissn><abstract>There has been fantastic progress in solving GPCR crystal structures. However, the ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited by the availability of accurate tools to explore receptor-ligand interactions. Visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions. Quantum mechanical approaches (QM) are often too computationally expensive, but the fragment molecular orbital (FMO) method offers an excellent solution that combines accuracy, speed and the ability to reveal key interactions that would otherwise be hard to detect. Integration of GPCR crystallography or homology modelling with FMO reveals atomistic details of the individual contributions of each residue and water molecule towards ligand binding, including an analysis of their chemical nature.</abstract><cop>England</cop><pmid>31022570</pmid><doi>10.1016/j.sbi.2019.03.021</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-440X |
ispartof | Current opinion in structural biology, 2019-04, Vol.55, p.85-92 |
issn | 0959-440X 1879-033X |
language | eng |
recordid | cdi_proquest_miscellaneous_2216284583 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Drug Discovery - methods Humans Ligands Models, Molecular Protein Binding Protein Conformation Quantum Theory Receptors, G-Protein-Coupled - chemistry Receptors, G-Protein-Coupled - metabolism |
title | Characterising GPCR-ligand interactions using a fragment molecular orbital-based approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T15%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterising%20GPCR-ligand%20interactions%20using%20a%20fragment%20molecular%20orbital-based%20approach&rft.jtitle=Current%20opinion%20in%20structural%20biology&rft.au=Heifetz,%20Alexander&rft.date=2019-04&rft.volume=55&rft.spage=85&rft.epage=92&rft.pages=85-92&rft.issn=0959-440X&rft.eissn=1879-033X&rft_id=info:doi/10.1016/j.sbi.2019.03.021&rft_dat=%3Cproquest_cross%3E2216284583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216284583&rft_id=info:pmid/31022570&rfr_iscdi=true |