Characterising GPCR-ligand interactions using a fragment molecular orbital-based approach

There has been fantastic progress in solving GPCR crystal structures. However, the ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited by the availability of accurate tools to explore receptor-ligand interactions. Visual inspection and molecular mechanics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in structural biology 2019-04, Vol.55, p.85-92
Hauptverfasser: Heifetz, Alexander, James, Tim, Southey, Michelle, Morao, Inaki, Aldeghi, Matteo, Sarrat, Laurie, Fedorov, Dmitri G, Bodkin, Mike J, Townsend-Nicholson, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue
container_start_page 85
container_title Current opinion in structural biology
container_volume 55
creator Heifetz, Alexander
James, Tim
Southey, Michelle
Morao, Inaki
Aldeghi, Matteo
Sarrat, Laurie
Fedorov, Dmitri G
Bodkin, Mike J
Townsend-Nicholson, Andrea
description There has been fantastic progress in solving GPCR crystal structures. However, the ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited by the availability of accurate tools to explore receptor-ligand interactions. Visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions. Quantum mechanical approaches (QM) are often too computationally expensive, but the fragment molecular orbital (FMO) method offers an excellent solution that combines accuracy, speed and the ability to reveal key interactions that would otherwise be hard to detect. Integration of GPCR crystallography or homology modelling with FMO reveals atomistic details of the individual contributions of each residue and water molecule towards ligand binding, including an analysis of their chemical nature.
doi_str_mv 10.1016/j.sbi.2019.03.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2216284583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2216284583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-df9dcde1248c3930cca6cb4189daba26f41016dd032af4b7bae30ea86de81d823</originalsourceid><addsrcrecordid>eNo9kEtLw0AQxxdRbK1-AC-So5fE2UfTzVGKVqGgiEI9LbOPtFvyqLvJwW9vaqungZn_g_kRck0ho0Dzu20Wtc8Y0CIDngGjJ2RM5axIgfPVKRlDMS1SIWA1IhcxbgEgp0KekxGnwNh0BmPyOd9gQNO54KNv1snidf6WVn6NjU18M6yHm2-bmPS_Z0zKgOvaNV1St5UzfYUhaYP2HVapxuhsgrtdaNFsLslZiVV0V8c5IR-PD-_zp3T5snie3y9Tw4XoUlsW1lhHmZCGFxyMwdxoQWVhUSPLS7F_1VrgDEuhZxodB4cyt05SKxmfkNtD7lD71bvYqdpH46oKG9f2UTFGcybFVPJBSg9SE9oYgyvVLvgaw7eioPY1aqsGompPVAFXA9HBc3OM73Xt7L_jDyH_ARCbdEk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216284583</pqid></control><display><type>article</type><title>Characterising GPCR-ligand interactions using a fragment molecular orbital-based approach</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Heifetz, Alexander ; James, Tim ; Southey, Michelle ; Morao, Inaki ; Aldeghi, Matteo ; Sarrat, Laurie ; Fedorov, Dmitri G ; Bodkin, Mike J ; Townsend-Nicholson, Andrea</creator><creatorcontrib>Heifetz, Alexander ; James, Tim ; Southey, Michelle ; Morao, Inaki ; Aldeghi, Matteo ; Sarrat, Laurie ; Fedorov, Dmitri G ; Bodkin, Mike J ; Townsend-Nicholson, Andrea</creatorcontrib><description>There has been fantastic progress in solving GPCR crystal structures. However, the ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited by the availability of accurate tools to explore receptor-ligand interactions. Visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions. Quantum mechanical approaches (QM) are often too computationally expensive, but the fragment molecular orbital (FMO) method offers an excellent solution that combines accuracy, speed and the ability to reveal key interactions that would otherwise be hard to detect. Integration of GPCR crystallography or homology modelling with FMO reveals atomistic details of the individual contributions of each residue and water molecule towards ligand binding, including an analysis of their chemical nature.</description><identifier>ISSN: 0959-440X</identifier><identifier>EISSN: 1879-033X</identifier><identifier>DOI: 10.1016/j.sbi.2019.03.021</identifier><identifier>PMID: 31022570</identifier><language>eng</language><publisher>England</publisher><subject>Drug Discovery - methods ; Humans ; Ligands ; Models, Molecular ; Protein Binding ; Protein Conformation ; Quantum Theory ; Receptors, G-Protein-Coupled - chemistry ; Receptors, G-Protein-Coupled - metabolism</subject><ispartof>Current opinion in structural biology, 2019-04, Vol.55, p.85-92</ispartof><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-df9dcde1248c3930cca6cb4189daba26f41016dd032af4b7bae30ea86de81d823</citedby><cites>FETCH-LOGICAL-c344t-df9dcde1248c3930cca6cb4189daba26f41016dd032af4b7bae30ea86de81d823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31022570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heifetz, Alexander</creatorcontrib><creatorcontrib>James, Tim</creatorcontrib><creatorcontrib>Southey, Michelle</creatorcontrib><creatorcontrib>Morao, Inaki</creatorcontrib><creatorcontrib>Aldeghi, Matteo</creatorcontrib><creatorcontrib>Sarrat, Laurie</creatorcontrib><creatorcontrib>Fedorov, Dmitri G</creatorcontrib><creatorcontrib>Bodkin, Mike J</creatorcontrib><creatorcontrib>Townsend-Nicholson, Andrea</creatorcontrib><title>Characterising GPCR-ligand interactions using a fragment molecular orbital-based approach</title><title>Current opinion in structural biology</title><addtitle>Curr Opin Struct Biol</addtitle><description>There has been fantastic progress in solving GPCR crystal structures. However, the ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited by the availability of accurate tools to explore receptor-ligand interactions. Visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions. Quantum mechanical approaches (QM) are often too computationally expensive, but the fragment molecular orbital (FMO) method offers an excellent solution that combines accuracy, speed and the ability to reveal key interactions that would otherwise be hard to detect. Integration of GPCR crystallography or homology modelling with FMO reveals atomistic details of the individual contributions of each residue and water molecule towards ligand binding, including an analysis of their chemical nature.</description><subject>Drug Discovery - methods</subject><subject>Humans</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Quantum Theory</subject><subject>Receptors, G-Protein-Coupled - chemistry</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><issn>0959-440X</issn><issn>1879-033X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtLw0AQxxdRbK1-AC-So5fE2UfTzVGKVqGgiEI9LbOPtFvyqLvJwW9vaqungZn_g_kRck0ho0Dzu20Wtc8Y0CIDngGjJ2RM5axIgfPVKRlDMS1SIWA1IhcxbgEgp0KekxGnwNh0BmPyOd9gQNO54KNv1snidf6WVn6NjU18M6yHm2-bmPS_Z0zKgOvaNV1St5UzfYUhaYP2HVapxuhsgrtdaNFsLslZiVV0V8c5IR-PD-_zp3T5snie3y9Tw4XoUlsW1lhHmZCGFxyMwdxoQWVhUSPLS7F_1VrgDEuhZxodB4cyt05SKxmfkNtD7lD71bvYqdpH46oKG9f2UTFGcybFVPJBSg9SE9oYgyvVLvgaw7eioPY1aqsGompPVAFXA9HBc3OM73Xt7L_jDyH_ARCbdEk</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Heifetz, Alexander</creator><creator>James, Tim</creator><creator>Southey, Michelle</creator><creator>Morao, Inaki</creator><creator>Aldeghi, Matteo</creator><creator>Sarrat, Laurie</creator><creator>Fedorov, Dmitri G</creator><creator>Bodkin, Mike J</creator><creator>Townsend-Nicholson, Andrea</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201904</creationdate><title>Characterising GPCR-ligand interactions using a fragment molecular orbital-based approach</title><author>Heifetz, Alexander ; James, Tim ; Southey, Michelle ; Morao, Inaki ; Aldeghi, Matteo ; Sarrat, Laurie ; Fedorov, Dmitri G ; Bodkin, Mike J ; Townsend-Nicholson, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-df9dcde1248c3930cca6cb4189daba26f41016dd032af4b7bae30ea86de81d823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Drug Discovery - methods</topic><topic>Humans</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Quantum Theory</topic><topic>Receptors, G-Protein-Coupled - chemistry</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heifetz, Alexander</creatorcontrib><creatorcontrib>James, Tim</creatorcontrib><creatorcontrib>Southey, Michelle</creatorcontrib><creatorcontrib>Morao, Inaki</creatorcontrib><creatorcontrib>Aldeghi, Matteo</creatorcontrib><creatorcontrib>Sarrat, Laurie</creatorcontrib><creatorcontrib>Fedorov, Dmitri G</creatorcontrib><creatorcontrib>Bodkin, Mike J</creatorcontrib><creatorcontrib>Townsend-Nicholson, Andrea</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current opinion in structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heifetz, Alexander</au><au>James, Tim</au><au>Southey, Michelle</au><au>Morao, Inaki</au><au>Aldeghi, Matteo</au><au>Sarrat, Laurie</au><au>Fedorov, Dmitri G</au><au>Bodkin, Mike J</au><au>Townsend-Nicholson, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterising GPCR-ligand interactions using a fragment molecular orbital-based approach</atitle><jtitle>Current opinion in structural biology</jtitle><addtitle>Curr Opin Struct Biol</addtitle><date>2019-04</date><risdate>2019</risdate><volume>55</volume><spage>85</spage><epage>92</epage><pages>85-92</pages><issn>0959-440X</issn><eissn>1879-033X</eissn><abstract>There has been fantastic progress in solving GPCR crystal structures. However, the ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited by the availability of accurate tools to explore receptor-ligand interactions. Visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions. Quantum mechanical approaches (QM) are often too computationally expensive, but the fragment molecular orbital (FMO) method offers an excellent solution that combines accuracy, speed and the ability to reveal key interactions that would otherwise be hard to detect. Integration of GPCR crystallography or homology modelling with FMO reveals atomistic details of the individual contributions of each residue and water molecule towards ligand binding, including an analysis of their chemical nature.</abstract><cop>England</cop><pmid>31022570</pmid><doi>10.1016/j.sbi.2019.03.021</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0959-440X
ispartof Current opinion in structural biology, 2019-04, Vol.55, p.85-92
issn 0959-440X
1879-033X
language eng
recordid cdi_proquest_miscellaneous_2216284583
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Drug Discovery - methods
Humans
Ligands
Models, Molecular
Protein Binding
Protein Conformation
Quantum Theory
Receptors, G-Protein-Coupled - chemistry
Receptors, G-Protein-Coupled - metabolism
title Characterising GPCR-ligand interactions using a fragment molecular orbital-based approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T15%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterising%20GPCR-ligand%20interactions%20using%20a%20fragment%20molecular%20orbital-based%20approach&rft.jtitle=Current%20opinion%20in%20structural%20biology&rft.au=Heifetz,%20Alexander&rft.date=2019-04&rft.volume=55&rft.spage=85&rft.epage=92&rft.pages=85-92&rft.issn=0959-440X&rft.eissn=1879-033X&rft_id=info:doi/10.1016/j.sbi.2019.03.021&rft_dat=%3Cproquest_cross%3E2216284583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216284583&rft_id=info:pmid/31022570&rfr_iscdi=true