Bio-compatible patient-specific elastic bolus for clinical implementation

We investigated two types of materials with very low Shore hardness, silicon rubber (Dragon Skin) and urethane liquid rubber (Clear Flex 30), for use in 3D printing patient-specific boluses. Boluses were manufactured with these materials using a mold casting method. NinjaFlex was also used to manufa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2019-05, Vol.64 (10), p.105006-105006
Hauptverfasser: Park, Jong Min, Son, Jeaman, An, Hyun Joon, Kim, Jin Ho, Wu, Hong-Gyun, Kim, Jung-in
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105006
container_issue 10
container_start_page 105006
container_title Physics in medicine & biology
container_volume 64
creator Park, Jong Min
Son, Jeaman
An, Hyun Joon
Kim, Jin Ho
Wu, Hong-Gyun
Kim, Jung-in
description We investigated two types of materials with very low Shore hardness, silicon rubber (Dragon Skin) and urethane liquid rubber (Clear Flex 30), for use in 3D printing patient-specific boluses. Boluses were manufactured with these materials using a mold casting method. NinjaFlex was also used to manufacture the bolus using a direct printing method. These patient-specific boluses were designed for 3D-printed elaborate human phantoms and their biological, physical, and dosimetric properties were comprehensively assessed. The results of cytotoxicity, skin irritation, and skin sensitization tests showed that Dragon Skin was the most biologically stable material. Furthermore, Dragon Skin exhibited excellent physical properties in terms of flexibility (Shore hardness 10A), durability (tensile strength of 475 psi and elongation at break of 1000 (%)), and preparation (5 h curing time). Accordingly, Dragon Skin was finally selected for the bio-compatible patient-specific elastic (BPE) bolus. The dosimetric characteristics were thoroughly investigated with depth dose curves and surface dose. Dragon Skin showed the lowest differences between the calculated dose under virtual bolus and the measured dose at the surface of the phantom head and the lowest amount of unwanted air gap between the bolus and phantom. Overall, Dragon Skin is a suitable material for patient-specific elastic bolus, and it could be implemented effectively in the clinic.
doi_str_mv 10.1088/1361-6560/ab1c93
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2216284465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2216284465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-4c4eb427fd63965a58213c505e651cd4dfc59dbf17326e3fa8a8b8e907ad6d193</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqWwM6GMDIT6-pVkhIpHpUosMFuOY0uunDjEycC_J1FKWWA6kvWdc-UPoWvA94DzfA1UQCq4wGtVgi7oCVoen07REmMKaQGcL9BFjHuMAXLCztGCAiYkA7ZE20cXUh3qVvWu9CaZ0jR9GlujnXU6MV7Ffswy-CEmNnSJ9q5xWvnE1a039UiPndBcojOrfDRXh1yhj-en981runt72W4edqlmBe1TppkpGclsJWghuOI5Aao55kZw0BWrrOZFVVrIKBGGWpWrvMxNgTNViQoKukK3827bhc_BxF7WLmrjvWpMGKIkBATJGRN8RPGM6i7E2Bkr287VqvuSgOUkUE625GRLzgLHys1hfShrUx0LP8Z-z7vQyn0Yumb8rGzrUgo2z3KMhWwrO6J3f6D_nv4GHD2HUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216284465</pqid></control><display><type>article</type><title>Bio-compatible patient-specific elastic bolus for clinical implementation</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Park, Jong Min ; Son, Jeaman ; An, Hyun Joon ; Kim, Jin Ho ; Wu, Hong-Gyun ; Kim, Jung-in</creator><creatorcontrib>Park, Jong Min ; Son, Jeaman ; An, Hyun Joon ; Kim, Jin Ho ; Wu, Hong-Gyun ; Kim, Jung-in</creatorcontrib><description>We investigated two types of materials with very low Shore hardness, silicon rubber (Dragon Skin) and urethane liquid rubber (Clear Flex 30), for use in 3D printing patient-specific boluses. Boluses were manufactured with these materials using a mold casting method. NinjaFlex was also used to manufacture the bolus using a direct printing method. These patient-specific boluses were designed for 3D-printed elaborate human phantoms and their biological, physical, and dosimetric properties were comprehensively assessed. The results of cytotoxicity, skin irritation, and skin sensitization tests showed that Dragon Skin was the most biologically stable material. Furthermore, Dragon Skin exhibited excellent physical properties in terms of flexibility (Shore hardness 10A), durability (tensile strength of 475 psi and elongation at break of 1000 (%)), and preparation (5 h curing time). Accordingly, Dragon Skin was finally selected for the bio-compatible patient-specific elastic (BPE) bolus. The dosimetric characteristics were thoroughly investigated with depth dose curves and surface dose. Dragon Skin showed the lowest differences between the calculated dose under virtual bolus and the measured dose at the surface of the phantom head and the lowest amount of unwanted air gap between the bolus and phantom. Overall, Dragon Skin is a suitable material for patient-specific elastic bolus, and it could be implemented effectively in the clinic.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ab1c93</identifier><identifier>PMID: 31022714</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Biocompatible Materials - chemistry ; biological compatibility ; dosimetric evaluation ; Dragon Skin ; Head - radiation effects ; human phantom ; Humans ; Neoplasms - radiotherapy ; patient-specific elastic bolus ; Phantoms, Imaging ; Printing, Three-Dimensional - instrumentation ; radiation therapy ; Radiometry ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted - methods ; Rubber - chemistry ; Skin - radiation effects</subject><ispartof>Physics in medicine &amp; biology, 2019-05, Vol.64 (10), p.105006-105006</ispartof><rights>2019 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-4c4eb427fd63965a58213c505e651cd4dfc59dbf17326e3fa8a8b8e907ad6d193</citedby><cites>FETCH-LOGICAL-c493t-4c4eb427fd63965a58213c505e651cd4dfc59dbf17326e3fa8a8b8e907ad6d193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ab1c93/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31022714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Jong Min</creatorcontrib><creatorcontrib>Son, Jeaman</creatorcontrib><creatorcontrib>An, Hyun Joon</creatorcontrib><creatorcontrib>Kim, Jin Ho</creatorcontrib><creatorcontrib>Wu, Hong-Gyun</creatorcontrib><creatorcontrib>Kim, Jung-in</creatorcontrib><title>Bio-compatible patient-specific elastic bolus for clinical implementation</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>We investigated two types of materials with very low Shore hardness, silicon rubber (Dragon Skin) and urethane liquid rubber (Clear Flex 30), for use in 3D printing patient-specific boluses. Boluses were manufactured with these materials using a mold casting method. NinjaFlex was also used to manufacture the bolus using a direct printing method. These patient-specific boluses were designed for 3D-printed elaborate human phantoms and their biological, physical, and dosimetric properties were comprehensively assessed. The results of cytotoxicity, skin irritation, and skin sensitization tests showed that Dragon Skin was the most biologically stable material. Furthermore, Dragon Skin exhibited excellent physical properties in terms of flexibility (Shore hardness 10A), durability (tensile strength of 475 psi and elongation at break of 1000 (%)), and preparation (5 h curing time). Accordingly, Dragon Skin was finally selected for the bio-compatible patient-specific elastic (BPE) bolus. The dosimetric characteristics were thoroughly investigated with depth dose curves and surface dose. Dragon Skin showed the lowest differences between the calculated dose under virtual bolus and the measured dose at the surface of the phantom head and the lowest amount of unwanted air gap between the bolus and phantom. Overall, Dragon Skin is a suitable material for patient-specific elastic bolus, and it could be implemented effectively in the clinic.</description><subject>Biocompatible Materials - chemistry</subject><subject>biological compatibility</subject><subject>dosimetric evaluation</subject><subject>Dragon Skin</subject><subject>Head - radiation effects</subject><subject>human phantom</subject><subject>Humans</subject><subject>Neoplasms - radiotherapy</subject><subject>patient-specific elastic bolus</subject><subject>Phantoms, Imaging</subject><subject>Printing, Three-Dimensional - instrumentation</subject><subject>radiation therapy</subject><subject>Radiometry</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Rubber - chemistry</subject><subject>Skin - radiation effects</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDtPwzAUhS0EoqWwM6GMDIT6-pVkhIpHpUosMFuOY0uunDjEycC_J1FKWWA6kvWdc-UPoWvA94DzfA1UQCq4wGtVgi7oCVoen07REmMKaQGcL9BFjHuMAXLCztGCAiYkA7ZE20cXUh3qVvWu9CaZ0jR9GlujnXU6MV7Ffswy-CEmNnSJ9q5xWvnE1a039UiPndBcojOrfDRXh1yhj-en981runt72W4edqlmBe1TppkpGclsJWghuOI5Aao55kZw0BWrrOZFVVrIKBGGWpWrvMxNgTNViQoKukK3827bhc_BxF7WLmrjvWpMGKIkBATJGRN8RPGM6i7E2Bkr287VqvuSgOUkUE625GRLzgLHys1hfShrUx0LP8Z-z7vQyn0Yumb8rGzrUgo2z3KMhWwrO6J3f6D_nv4GHD2HUw</recordid><startdate>20190510</startdate><enddate>20190510</enddate><creator>Park, Jong Min</creator><creator>Son, Jeaman</creator><creator>An, Hyun Joon</creator><creator>Kim, Jin Ho</creator><creator>Wu, Hong-Gyun</creator><creator>Kim, Jung-in</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20190510</creationdate><title>Bio-compatible patient-specific elastic bolus for clinical implementation</title><author>Park, Jong Min ; Son, Jeaman ; An, Hyun Joon ; Kim, Jin Ho ; Wu, Hong-Gyun ; Kim, Jung-in</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-4c4eb427fd63965a58213c505e651cd4dfc59dbf17326e3fa8a8b8e907ad6d193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biocompatible Materials - chemistry</topic><topic>biological compatibility</topic><topic>dosimetric evaluation</topic><topic>Dragon Skin</topic><topic>Head - radiation effects</topic><topic>human phantom</topic><topic>Humans</topic><topic>Neoplasms - radiotherapy</topic><topic>patient-specific elastic bolus</topic><topic>Phantoms, Imaging</topic><topic>Printing, Three-Dimensional - instrumentation</topic><topic>radiation therapy</topic><topic>Radiometry</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Rubber - chemistry</topic><topic>Skin - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Jong Min</creatorcontrib><creatorcontrib>Son, Jeaman</creatorcontrib><creatorcontrib>An, Hyun Joon</creatorcontrib><creatorcontrib>Kim, Jin Ho</creatorcontrib><creatorcontrib>Wu, Hong-Gyun</creatorcontrib><creatorcontrib>Kim, Jung-in</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Jong Min</au><au>Son, Jeaman</au><au>An, Hyun Joon</au><au>Kim, Jin Ho</au><au>Wu, Hong-Gyun</au><au>Kim, Jung-in</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-compatible patient-specific elastic bolus for clinical implementation</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2019-05-10</date><risdate>2019</risdate><volume>64</volume><issue>10</issue><spage>105006</spage><epage>105006</epage><pages>105006-105006</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>We investigated two types of materials with very low Shore hardness, silicon rubber (Dragon Skin) and urethane liquid rubber (Clear Flex 30), for use in 3D printing patient-specific boluses. Boluses were manufactured with these materials using a mold casting method. NinjaFlex was also used to manufacture the bolus using a direct printing method. These patient-specific boluses were designed for 3D-printed elaborate human phantoms and their biological, physical, and dosimetric properties were comprehensively assessed. The results of cytotoxicity, skin irritation, and skin sensitization tests showed that Dragon Skin was the most biologically stable material. Furthermore, Dragon Skin exhibited excellent physical properties in terms of flexibility (Shore hardness 10A), durability (tensile strength of 475 psi and elongation at break of 1000 (%)), and preparation (5 h curing time). Accordingly, Dragon Skin was finally selected for the bio-compatible patient-specific elastic (BPE) bolus. The dosimetric characteristics were thoroughly investigated with depth dose curves and surface dose. Dragon Skin showed the lowest differences between the calculated dose under virtual bolus and the measured dose at the surface of the phantom head and the lowest amount of unwanted air gap between the bolus and phantom. Overall, Dragon Skin is a suitable material for patient-specific elastic bolus, and it could be implemented effectively in the clinic.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>31022714</pmid><doi>10.1088/1361-6560/ab1c93</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2019-05, Vol.64 (10), p.105006-105006
issn 0031-9155
1361-6560
1361-6560
language eng
recordid cdi_proquest_miscellaneous_2216284465
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Biocompatible Materials - chemistry
biological compatibility
dosimetric evaluation
Dragon Skin
Head - radiation effects
human phantom
Humans
Neoplasms - radiotherapy
patient-specific elastic bolus
Phantoms, Imaging
Printing, Three-Dimensional - instrumentation
radiation therapy
Radiometry
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted - methods
Rubber - chemistry
Skin - radiation effects
title Bio-compatible patient-specific elastic bolus for clinical implementation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-compatible%20patient-specific%20elastic%20bolus%20for%20clinical%20implementation&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Park,%20Jong%20Min&rft.date=2019-05-10&rft.volume=64&rft.issue=10&rft.spage=105006&rft.epage=105006&rft.pages=105006-105006&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ab1c93&rft_dat=%3Cproquest_cross%3E2216284465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216284465&rft_id=info:pmid/31022714&rfr_iscdi=true