Bio-compatible patient-specific elastic bolus for clinical implementation
We investigated two types of materials with very low Shore hardness, silicon rubber (Dragon Skin) and urethane liquid rubber (Clear Flex 30), for use in 3D printing patient-specific boluses. Boluses were manufactured with these materials using a mold casting method. NinjaFlex was also used to manufa...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2019-05, Vol.64 (10), p.105006-105006 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105006 |
---|---|
container_issue | 10 |
container_start_page | 105006 |
container_title | Physics in medicine & biology |
container_volume | 64 |
creator | Park, Jong Min Son, Jeaman An, Hyun Joon Kim, Jin Ho Wu, Hong-Gyun Kim, Jung-in |
description | We investigated two types of materials with very low Shore hardness, silicon rubber (Dragon Skin) and urethane liquid rubber (Clear Flex 30), for use in 3D printing patient-specific boluses. Boluses were manufactured with these materials using a mold casting method. NinjaFlex was also used to manufacture the bolus using a direct printing method. These patient-specific boluses were designed for 3D-printed elaborate human phantoms and their biological, physical, and dosimetric properties were comprehensively assessed. The results of cytotoxicity, skin irritation, and skin sensitization tests showed that Dragon Skin was the most biologically stable material. Furthermore, Dragon Skin exhibited excellent physical properties in terms of flexibility (Shore hardness 10A), durability (tensile strength of 475 psi and elongation at break of 1000 (%)), and preparation (5 h curing time). Accordingly, Dragon Skin was finally selected for the bio-compatible patient-specific elastic (BPE) bolus. The dosimetric characteristics were thoroughly investigated with depth dose curves and surface dose. Dragon Skin showed the lowest differences between the calculated dose under virtual bolus and the measured dose at the surface of the phantom head and the lowest amount of unwanted air gap between the bolus and phantom. Overall, Dragon Skin is a suitable material for patient-specific elastic bolus, and it could be implemented effectively in the clinic. |
doi_str_mv | 10.1088/1361-6560/ab1c93 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2216284465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2216284465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-4c4eb427fd63965a58213c505e651cd4dfc59dbf17326e3fa8a8b8e907ad6d193</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqWwM6GMDIT6-pVkhIpHpUosMFuOY0uunDjEycC_J1FKWWA6kvWdc-UPoWvA94DzfA1UQCq4wGtVgi7oCVoen07REmMKaQGcL9BFjHuMAXLCztGCAiYkA7ZE20cXUh3qVvWu9CaZ0jR9GlujnXU6MV7Ffswy-CEmNnSJ9q5xWvnE1a039UiPndBcojOrfDRXh1yhj-en981runt72W4edqlmBe1TppkpGclsJWghuOI5Aao55kZw0BWrrOZFVVrIKBGGWpWrvMxNgTNViQoKukK3827bhc_BxF7WLmrjvWpMGKIkBATJGRN8RPGM6i7E2Bkr287VqvuSgOUkUE625GRLzgLHys1hfShrUx0LP8Z-z7vQyn0Yumb8rGzrUgo2z3KMhWwrO6J3f6D_nv4GHD2HUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216284465</pqid></control><display><type>article</type><title>Bio-compatible patient-specific elastic bolus for clinical implementation</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Park, Jong Min ; Son, Jeaman ; An, Hyun Joon ; Kim, Jin Ho ; Wu, Hong-Gyun ; Kim, Jung-in</creator><creatorcontrib>Park, Jong Min ; Son, Jeaman ; An, Hyun Joon ; Kim, Jin Ho ; Wu, Hong-Gyun ; Kim, Jung-in</creatorcontrib><description>We investigated two types of materials with very low Shore hardness, silicon rubber (Dragon Skin) and urethane liquid rubber (Clear Flex 30), for use in 3D printing patient-specific boluses. Boluses were manufactured with these materials using a mold casting method. NinjaFlex was also used to manufacture the bolus using a direct printing method. These patient-specific boluses were designed for 3D-printed elaborate human phantoms and their biological, physical, and dosimetric properties were comprehensively assessed. The results of cytotoxicity, skin irritation, and skin sensitization tests showed that Dragon Skin was the most biologically stable material. Furthermore, Dragon Skin exhibited excellent physical properties in terms of flexibility (Shore hardness 10A), durability (tensile strength of 475 psi and elongation at break of 1000 (%)), and preparation (5 h curing time). Accordingly, Dragon Skin was finally selected for the bio-compatible patient-specific elastic (BPE) bolus. The dosimetric characteristics were thoroughly investigated with depth dose curves and surface dose. Dragon Skin showed the lowest differences between the calculated dose under virtual bolus and the measured dose at the surface of the phantom head and the lowest amount of unwanted air gap between the bolus and phantom. Overall, Dragon Skin is a suitable material for patient-specific elastic bolus, and it could be implemented effectively in the clinic.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ab1c93</identifier><identifier>PMID: 31022714</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Biocompatible Materials - chemistry ; biological compatibility ; dosimetric evaluation ; Dragon Skin ; Head - radiation effects ; human phantom ; Humans ; Neoplasms - radiotherapy ; patient-specific elastic bolus ; Phantoms, Imaging ; Printing, Three-Dimensional - instrumentation ; radiation therapy ; Radiometry ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted - methods ; Rubber - chemistry ; Skin - radiation effects</subject><ispartof>Physics in medicine & biology, 2019-05, Vol.64 (10), p.105006-105006</ispartof><rights>2019 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-4c4eb427fd63965a58213c505e651cd4dfc59dbf17326e3fa8a8b8e907ad6d193</citedby><cites>FETCH-LOGICAL-c493t-4c4eb427fd63965a58213c505e651cd4dfc59dbf17326e3fa8a8b8e907ad6d193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ab1c93/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31022714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Jong Min</creatorcontrib><creatorcontrib>Son, Jeaman</creatorcontrib><creatorcontrib>An, Hyun Joon</creatorcontrib><creatorcontrib>Kim, Jin Ho</creatorcontrib><creatorcontrib>Wu, Hong-Gyun</creatorcontrib><creatorcontrib>Kim, Jung-in</creatorcontrib><title>Bio-compatible patient-specific elastic bolus for clinical implementation</title><title>Physics in medicine & biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>We investigated two types of materials with very low Shore hardness, silicon rubber (Dragon Skin) and urethane liquid rubber (Clear Flex 30), for use in 3D printing patient-specific boluses. Boluses were manufactured with these materials using a mold casting method. NinjaFlex was also used to manufacture the bolus using a direct printing method. These patient-specific boluses were designed for 3D-printed elaborate human phantoms and their biological, physical, and dosimetric properties were comprehensively assessed. The results of cytotoxicity, skin irritation, and skin sensitization tests showed that Dragon Skin was the most biologically stable material. Furthermore, Dragon Skin exhibited excellent physical properties in terms of flexibility (Shore hardness 10A), durability (tensile strength of 475 psi and elongation at break of 1000 (%)), and preparation (5 h curing time). Accordingly, Dragon Skin was finally selected for the bio-compatible patient-specific elastic (BPE) bolus. The dosimetric characteristics were thoroughly investigated with depth dose curves and surface dose. Dragon Skin showed the lowest differences between the calculated dose under virtual bolus and the measured dose at the surface of the phantom head and the lowest amount of unwanted air gap between the bolus and phantom. Overall, Dragon Skin is a suitable material for patient-specific elastic bolus, and it could be implemented effectively in the clinic.</description><subject>Biocompatible Materials - chemistry</subject><subject>biological compatibility</subject><subject>dosimetric evaluation</subject><subject>Dragon Skin</subject><subject>Head - radiation effects</subject><subject>human phantom</subject><subject>Humans</subject><subject>Neoplasms - radiotherapy</subject><subject>patient-specific elastic bolus</subject><subject>Phantoms, Imaging</subject><subject>Printing, Three-Dimensional - instrumentation</subject><subject>radiation therapy</subject><subject>Radiometry</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Rubber - chemistry</subject><subject>Skin - radiation effects</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDtPwzAUhS0EoqWwM6GMDIT6-pVkhIpHpUosMFuOY0uunDjEycC_J1FKWWA6kvWdc-UPoWvA94DzfA1UQCq4wGtVgi7oCVoen07REmMKaQGcL9BFjHuMAXLCztGCAiYkA7ZE20cXUh3qVvWu9CaZ0jR9GlujnXU6MV7Ffswy-CEmNnSJ9q5xWvnE1a039UiPndBcojOrfDRXh1yhj-en981runt72W4edqlmBe1TppkpGclsJWghuOI5Aao55kZw0BWrrOZFVVrIKBGGWpWrvMxNgTNViQoKukK3827bhc_BxF7WLmrjvWpMGKIkBATJGRN8RPGM6i7E2Bkr287VqvuSgOUkUE625GRLzgLHys1hfShrUx0LP8Z-z7vQyn0Yumb8rGzrUgo2z3KMhWwrO6J3f6D_nv4GHD2HUw</recordid><startdate>20190510</startdate><enddate>20190510</enddate><creator>Park, Jong Min</creator><creator>Son, Jeaman</creator><creator>An, Hyun Joon</creator><creator>Kim, Jin Ho</creator><creator>Wu, Hong-Gyun</creator><creator>Kim, Jung-in</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20190510</creationdate><title>Bio-compatible patient-specific elastic bolus for clinical implementation</title><author>Park, Jong Min ; Son, Jeaman ; An, Hyun Joon ; Kim, Jin Ho ; Wu, Hong-Gyun ; Kim, Jung-in</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-4c4eb427fd63965a58213c505e651cd4dfc59dbf17326e3fa8a8b8e907ad6d193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biocompatible Materials - chemistry</topic><topic>biological compatibility</topic><topic>dosimetric evaluation</topic><topic>Dragon Skin</topic><topic>Head - radiation effects</topic><topic>human phantom</topic><topic>Humans</topic><topic>Neoplasms - radiotherapy</topic><topic>patient-specific elastic bolus</topic><topic>Phantoms, Imaging</topic><topic>Printing, Three-Dimensional - instrumentation</topic><topic>radiation therapy</topic><topic>Radiometry</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Rubber - chemistry</topic><topic>Skin - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Jong Min</creatorcontrib><creatorcontrib>Son, Jeaman</creatorcontrib><creatorcontrib>An, Hyun Joon</creatorcontrib><creatorcontrib>Kim, Jin Ho</creatorcontrib><creatorcontrib>Wu, Hong-Gyun</creatorcontrib><creatorcontrib>Kim, Jung-in</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Jong Min</au><au>Son, Jeaman</au><au>An, Hyun Joon</au><au>Kim, Jin Ho</au><au>Wu, Hong-Gyun</au><au>Kim, Jung-in</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-compatible patient-specific elastic bolus for clinical implementation</atitle><jtitle>Physics in medicine & biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2019-05-10</date><risdate>2019</risdate><volume>64</volume><issue>10</issue><spage>105006</spage><epage>105006</epage><pages>105006-105006</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>We investigated two types of materials with very low Shore hardness, silicon rubber (Dragon Skin) and urethane liquid rubber (Clear Flex 30), for use in 3D printing patient-specific boluses. Boluses were manufactured with these materials using a mold casting method. NinjaFlex was also used to manufacture the bolus using a direct printing method. These patient-specific boluses were designed for 3D-printed elaborate human phantoms and their biological, physical, and dosimetric properties were comprehensively assessed. The results of cytotoxicity, skin irritation, and skin sensitization tests showed that Dragon Skin was the most biologically stable material. Furthermore, Dragon Skin exhibited excellent physical properties in terms of flexibility (Shore hardness 10A), durability (tensile strength of 475 psi and elongation at break of 1000 (%)), and preparation (5 h curing time). Accordingly, Dragon Skin was finally selected for the bio-compatible patient-specific elastic (BPE) bolus. The dosimetric characteristics were thoroughly investigated with depth dose curves and surface dose. Dragon Skin showed the lowest differences between the calculated dose under virtual bolus and the measured dose at the surface of the phantom head and the lowest amount of unwanted air gap between the bolus and phantom. Overall, Dragon Skin is a suitable material for patient-specific elastic bolus, and it could be implemented effectively in the clinic.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>31022714</pmid><doi>10.1088/1361-6560/ab1c93</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2019-05, Vol.64 (10), p.105006-105006 |
issn | 0031-9155 1361-6560 1361-6560 |
language | eng |
recordid | cdi_proquest_miscellaneous_2216284465 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Biocompatible Materials - chemistry biological compatibility dosimetric evaluation Dragon Skin Head - radiation effects human phantom Humans Neoplasms - radiotherapy patient-specific elastic bolus Phantoms, Imaging Printing, Three-Dimensional - instrumentation radiation therapy Radiometry Radiotherapy Dosage Radiotherapy Planning, Computer-Assisted - methods Rubber - chemistry Skin - radiation effects |
title | Bio-compatible patient-specific elastic bolus for clinical implementation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-compatible%20patient-specific%20elastic%20bolus%20for%20clinical%20implementation&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Park,%20Jong%20Min&rft.date=2019-05-10&rft.volume=64&rft.issue=10&rft.spage=105006&rft.epage=105006&rft.pages=105006-105006&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ab1c93&rft_dat=%3Cproquest_cross%3E2216284465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216284465&rft_id=info:pmid/31022714&rfr_iscdi=true |