Multi-scale modeling of early-stage morphology in solution-processed polycrystalline thin films

A model is introduced for treating early-stage nucleation, growth kinetics, and mesoscale domain structure in submonolayer polycrystalline films prepared by solution-phase processing methods such as spin casting, dip coating, liquid-based printing, and related techniques. The model combines a stocha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2019, Vol.21 (18), p.9538-9546
Hauptverfasser: Patrick, David L, Schaaf, Cyrus, Morehouse, Robell, Johnson, Brad L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9546
container_issue 18
container_start_page 9538
container_title Physical chemistry chemical physics : PCCP
container_volume 21
creator Patrick, David L
Schaaf, Cyrus
Morehouse, Robell
Johnson, Brad L
description A model is introduced for treating early-stage nucleation, growth kinetics, and mesoscale domain structure in submonolayer polycrystalline films prepared by solution-phase processing methods such as spin casting, dip coating, liquid-based printing, and related techniques. The model combines a stochastic treatment of nucleation derived from classical nucleation theory with deterministic computation of the spatiotemporal dynamics of the monomer concentration landscape by numerical solution of the two-dimensional diffusion equation, treating nuclei as monomer sinks. Results are compared to experimental measurements of solution-processed submonolayer tetracene films prepared using a vapor-liquid-solid deposition technique. Excellent agreement is observed with most major kinetic and structural film characteristics, including the existence of distinct induction, nucleation, and growth regimes, the onset time for nucleation, the number of domains formed per unit area, and the micron- to millimeter-scale spacing statistics of those domains. The model also provides a detailed description the dynamically-evolving monomer concentration landscape during film formation as well as quantities derived from it, such as time- and position-dependent domain nucleation and growth rates.
doi_str_mv 10.1039/c9cp01238a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2215019139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2221487785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-5adc4a5e62d8d41aa5837cece106405d3feec1b584771b7dd13982e1dc8dc22d3</originalsourceid><addsrcrecordid>eNpd0E1PwzAMBuAIgdgYXPgBqBIXhFSIk36kRzTxJQ3BAc5Vlrhbp7QpSXvovydjYwdOtqzHlvUScgn0Digv7lWhOgqMC3lEppBkPC6oSI4PfZ5NyJn3G0oppMBPyYQDZbQQMCXl22D6OvZKGowaq9HU7SqyVYTSmTH2vVxt565bW2NXY1S3kbdm6Gvbxp2zCr1HHXXWjMqNQZuwj1G_Dq6qTePPyUkljceLfZ2Rr6fHz_lLvHh_fp0_LGLFM9HHqdQqkSlmTAudgJSp4LlChUCzhKaaV4gKlqlI8hyWudbAC8EQtBJaMab5jNzs7oanvgf0fdnUXqExskU7-JIxSCkUYS3Q6390YwfXhu-CYpCIPBdpULc7pZz13mFVdq5upBtLoOU29nJezD9-Y38I-Gp_clg2qA_0L2f-A05-fqY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221487785</pqid></control><display><type>article</type><title>Multi-scale modeling of early-stage morphology in solution-processed polycrystalline thin films</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Patrick, David L ; Schaaf, Cyrus ; Morehouse, Robell ; Johnson, Brad L</creator><creatorcontrib>Patrick, David L ; Schaaf, Cyrus ; Morehouse, Robell ; Johnson, Brad L</creatorcontrib><description>A model is introduced for treating early-stage nucleation, growth kinetics, and mesoscale domain structure in submonolayer polycrystalline films prepared by solution-phase processing methods such as spin casting, dip coating, liquid-based printing, and related techniques. The model combines a stochastic treatment of nucleation derived from classical nucleation theory with deterministic computation of the spatiotemporal dynamics of the monomer concentration landscape by numerical solution of the two-dimensional diffusion equation, treating nuclei as monomer sinks. Results are compared to experimental measurements of solution-processed submonolayer tetracene films prepared using a vapor-liquid-solid deposition technique. Excellent agreement is observed with most major kinetic and structural film characteristics, including the existence of distinct induction, nucleation, and growth regimes, the onset time for nucleation, the number of domains formed per unit area, and the micron- to millimeter-scale spacing statistics of those domains. The model also provides a detailed description the dynamically-evolving monomer concentration landscape during film formation as well as quantities derived from it, such as time- and position-dependent domain nucleation and growth rates.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp01238a</identifier><identifier>PMID: 31020981</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Centrifugal casting ; Crystal growth ; Domains ; Immersion coating ; Mathematical models ; Monomers ; Morphology ; Motion pictures ; Nucleation ; Polycrystals ; Thin films ; Time dependence</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019, Vol.21 (18), p.9538-9546</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-5adc4a5e62d8d41aa5837cece106405d3feec1b584771b7dd13982e1dc8dc22d3</citedby><cites>FETCH-LOGICAL-c368t-5adc4a5e62d8d41aa5837cece106405d3feec1b584771b7dd13982e1dc8dc22d3</cites><orcidid>0000-0003-3543-9868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31020981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patrick, David L</creatorcontrib><creatorcontrib>Schaaf, Cyrus</creatorcontrib><creatorcontrib>Morehouse, Robell</creatorcontrib><creatorcontrib>Johnson, Brad L</creatorcontrib><title>Multi-scale modeling of early-stage morphology in solution-processed polycrystalline thin films</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>A model is introduced for treating early-stage nucleation, growth kinetics, and mesoscale domain structure in submonolayer polycrystalline films prepared by solution-phase processing methods such as spin casting, dip coating, liquid-based printing, and related techniques. The model combines a stochastic treatment of nucleation derived from classical nucleation theory with deterministic computation of the spatiotemporal dynamics of the monomer concentration landscape by numerical solution of the two-dimensional diffusion equation, treating nuclei as monomer sinks. Results are compared to experimental measurements of solution-processed submonolayer tetracene films prepared using a vapor-liquid-solid deposition technique. Excellent agreement is observed with most major kinetic and structural film characteristics, including the existence of distinct induction, nucleation, and growth regimes, the onset time for nucleation, the number of domains formed per unit area, and the micron- to millimeter-scale spacing statistics of those domains. The model also provides a detailed description the dynamically-evolving monomer concentration landscape during film formation as well as quantities derived from it, such as time- and position-dependent domain nucleation and growth rates.</description><subject>Centrifugal casting</subject><subject>Crystal growth</subject><subject>Domains</subject><subject>Immersion coating</subject><subject>Mathematical models</subject><subject>Monomers</subject><subject>Morphology</subject><subject>Motion pictures</subject><subject>Nucleation</subject><subject>Polycrystals</subject><subject>Thin films</subject><subject>Time dependence</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0E1PwzAMBuAIgdgYXPgBqBIXhFSIk36kRzTxJQ3BAc5Vlrhbp7QpSXvovydjYwdOtqzHlvUScgn0Digv7lWhOgqMC3lEppBkPC6oSI4PfZ5NyJn3G0oppMBPyYQDZbQQMCXl22D6OvZKGowaq9HU7SqyVYTSmTH2vVxt565bW2NXY1S3kbdm6Gvbxp2zCr1HHXXWjMqNQZuwj1G_Dq6qTePPyUkljceLfZ2Rr6fHz_lLvHh_fp0_LGLFM9HHqdQqkSlmTAudgJSp4LlChUCzhKaaV4gKlqlI8hyWudbAC8EQtBJaMab5jNzs7oanvgf0fdnUXqExskU7-JIxSCkUYS3Q6390YwfXhu-CYpCIPBdpULc7pZz13mFVdq5upBtLoOU29nJezD9-Y38I-Gp_clg2qA_0L2f-A05-fqY</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Patrick, David L</creator><creator>Schaaf, Cyrus</creator><creator>Morehouse, Robell</creator><creator>Johnson, Brad L</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3543-9868</orcidid></search><sort><creationdate>2019</creationdate><title>Multi-scale modeling of early-stage morphology in solution-processed polycrystalline thin films</title><author>Patrick, David L ; Schaaf, Cyrus ; Morehouse, Robell ; Johnson, Brad L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-5adc4a5e62d8d41aa5837cece106405d3feec1b584771b7dd13982e1dc8dc22d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Centrifugal casting</topic><topic>Crystal growth</topic><topic>Domains</topic><topic>Immersion coating</topic><topic>Mathematical models</topic><topic>Monomers</topic><topic>Morphology</topic><topic>Motion pictures</topic><topic>Nucleation</topic><topic>Polycrystals</topic><topic>Thin films</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patrick, David L</creatorcontrib><creatorcontrib>Schaaf, Cyrus</creatorcontrib><creatorcontrib>Morehouse, Robell</creatorcontrib><creatorcontrib>Johnson, Brad L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patrick, David L</au><au>Schaaf, Cyrus</au><au>Morehouse, Robell</au><au>Johnson, Brad L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scale modeling of early-stage morphology in solution-processed polycrystalline thin films</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2019</date><risdate>2019</risdate><volume>21</volume><issue>18</issue><spage>9538</spage><epage>9546</epage><pages>9538-9546</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>A model is introduced for treating early-stage nucleation, growth kinetics, and mesoscale domain structure in submonolayer polycrystalline films prepared by solution-phase processing methods such as spin casting, dip coating, liquid-based printing, and related techniques. The model combines a stochastic treatment of nucleation derived from classical nucleation theory with deterministic computation of the spatiotemporal dynamics of the monomer concentration landscape by numerical solution of the two-dimensional diffusion equation, treating nuclei as monomer sinks. Results are compared to experimental measurements of solution-processed submonolayer tetracene films prepared using a vapor-liquid-solid deposition technique. Excellent agreement is observed with most major kinetic and structural film characteristics, including the existence of distinct induction, nucleation, and growth regimes, the onset time for nucleation, the number of domains formed per unit area, and the micron- to millimeter-scale spacing statistics of those domains. The model also provides a detailed description the dynamically-evolving monomer concentration landscape during film formation as well as quantities derived from it, such as time- and position-dependent domain nucleation and growth rates.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31020981</pmid><doi>10.1039/c9cp01238a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3543-9868</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2019, Vol.21 (18), p.9538-9546
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2215019139
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Centrifugal casting
Crystal growth
Domains
Immersion coating
Mathematical models
Monomers
Morphology
Motion pictures
Nucleation
Polycrystals
Thin films
Time dependence
title Multi-scale modeling of early-stage morphology in solution-processed polycrystalline thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A34%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scale%20modeling%20of%20early-stage%20morphology%20in%20solution-processed%20polycrystalline%20thin%20films&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Patrick,%20David%20L&rft.date=2019&rft.volume=21&rft.issue=18&rft.spage=9538&rft.epage=9546&rft.pages=9538-9546&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp01238a&rft_dat=%3Cproquest_cross%3E2221487785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2221487785&rft_id=info:pmid/31020981&rfr_iscdi=true