Tuning the structure of bifunctional Pt/SmMn2O5 interfaces for promoted low-temperature CO oxidation activity

The interfacial structure of metal–oxide composite catalysts plays a vital role in heterogeneous catalysis, which is crucial to the adsorption and activation of reactants. Herein, the interfacial effects of bare and Fe/Co/Ni doped SmMn2O5 mullite oxide supported Pt clusters on CO oxidation have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2019-01, Vol.11 (17), p.8150-8159
Hauptverfasser: Liu, Xiao, Yang, Jiaqiang, Shen, Gurong, Shen, Meiqing, Zhao, Yunkun, Cho, Kyeongjae, Shan, Bin, Chen, Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8159
container_issue 17
container_start_page 8150
container_title Nanoscale
container_volume 11
creator Liu, Xiao
Yang, Jiaqiang
Shen, Gurong
Shen, Meiqing
Zhao, Yunkun
Cho, Kyeongjae
Shan, Bin
Chen, Rong
description The interfacial structure of metal–oxide composite catalysts plays a vital role in heterogeneous catalysis, which is crucial to the adsorption and activation of reactants. Herein, the interfacial effects of bare and Fe/Co/Ni doped SmMn2O5 mullite oxide supported Pt clusters on CO oxidation have been investigated by first-principles based microkinetics analysis. A robust formation of Pt/Mn2 trimer structures is demonstrated at the bifunctional interfaces irrespective of the Ptn cluster's size, which can provide spatially separated sites for CO adsorption and O2 dissociation. The binding strength of CO at the interfacial Pt sites is in the optimal range due to the charge transfer from Pt clusters to oxide, while the strong polarization of Mn2 dimers induced by Pt clusters with stable three-dimensional morphologies can lower the energy barrier of O2 dissociation. Based on the microkinetics analysis, the O2 dissociation is the rate-determining step in the full CO oxidation cycle, and the introduction of Mn–Fe hetero-dimers at the interface is predicted to further enhance the low temperature CO oxidation activity of Pt/SmMn2O5 catalysts.
doi_str_mv 10.1039/c8nr09054h
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2215011539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2215011539</sourcerecordid><originalsourceid>FETCH-LOGICAL-g183t-d9de286d5323a1e53e742dc4343ba9f7702158e633c8f4d534c607f5502656093</originalsourceid><addsrcrecordid>eNpdj8tOwzAQRS0EEqWw4QsssWET6nhsJ1miipdUVCTKunKdcZsqsYvt8Ph7UkAsWM1dnHt0h5DznF3lDKqJKV1gFZNic0BGnAmWART88C8rcUxOYtwypipQMCLdoneNW9O0QRpT6E3qA1Jv6aqxvTOp8U639ClNnrtHx-eSNi5hsNpgpNYHugu-8wlr2vr3LGG3w6C_FdM59R9NrfcGqgfRW5M-T8mR1W3Es987Ji-3N4vpfTab3z1Mr2fZOi8hZXVVIy9VLYGDzlECFoLXRoCAla5sUTCeyxIVgCmtGDBhFCuslIwrqVgFY3L54x3mvfYY07JrosG21Q59H5d86LM8l7BHL_6hW9-H4ekfCkRZSQ5f0PloTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215348952</pqid></control><display><type>article</type><title>Tuning the structure of bifunctional Pt/SmMn2O5 interfaces for promoted low-temperature CO oxidation activity</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Liu, Xiao ; Yang, Jiaqiang ; Shen, Gurong ; Shen, Meiqing ; Zhao, Yunkun ; Cho, Kyeongjae ; Shan, Bin ; Chen, Rong</creator><creatorcontrib>Liu, Xiao ; Yang, Jiaqiang ; Shen, Gurong ; Shen, Meiqing ; Zhao, Yunkun ; Cho, Kyeongjae ; Shan, Bin ; Chen, Rong</creatorcontrib><description>The interfacial structure of metal–oxide composite catalysts plays a vital role in heterogeneous catalysis, which is crucial to the adsorption and activation of reactants. Herein, the interfacial effects of bare and Fe/Co/Ni doped SmMn2O5 mullite oxide supported Pt clusters on CO oxidation have been investigated by first-principles based microkinetics analysis. A robust formation of Pt/Mn2 trimer structures is demonstrated at the bifunctional interfaces irrespective of the Ptn cluster's size, which can provide spatially separated sites for CO adsorption and O2 dissociation. The binding strength of CO at the interfacial Pt sites is in the optimal range due to the charge transfer from Pt clusters to oxide, while the strong polarization of Mn2 dimers induced by Pt clusters with stable three-dimensional morphologies can lower the energy barrier of O2 dissociation. Based on the microkinetics analysis, the O2 dissociation is the rate-determining step in the full CO oxidation cycle, and the introduction of Mn–Fe hetero-dimers at the interface is predicted to further enhance the low temperature CO oxidation activity of Pt/SmMn2O5 catalysts.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr09054h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Catalysis ; Catalysts ; Charge transfer ; Cluster analysis ; Cobalt ; Dimensional stability ; Dimers ; Energy of dissociation ; First principles ; Iron ; Low temperature ; Manganese ; Morphology ; Mullite ; Nickel ; Oxidation ; Platinum ; Trimers</subject><ispartof>Nanoscale, 2019-01, Vol.11 (17), p.8150-8159</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Yang, Jiaqiang</creatorcontrib><creatorcontrib>Shen, Gurong</creatorcontrib><creatorcontrib>Shen, Meiqing</creatorcontrib><creatorcontrib>Zhao, Yunkun</creatorcontrib><creatorcontrib>Cho, Kyeongjae</creatorcontrib><creatorcontrib>Shan, Bin</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><title>Tuning the structure of bifunctional Pt/SmMn2O5 interfaces for promoted low-temperature CO oxidation activity</title><title>Nanoscale</title><description>The interfacial structure of metal–oxide composite catalysts plays a vital role in heterogeneous catalysis, which is crucial to the adsorption and activation of reactants. Herein, the interfacial effects of bare and Fe/Co/Ni doped SmMn2O5 mullite oxide supported Pt clusters on CO oxidation have been investigated by first-principles based microkinetics analysis. A robust formation of Pt/Mn2 trimer structures is demonstrated at the bifunctional interfaces irrespective of the Ptn cluster's size, which can provide spatially separated sites for CO adsorption and O2 dissociation. The binding strength of CO at the interfacial Pt sites is in the optimal range due to the charge transfer from Pt clusters to oxide, while the strong polarization of Mn2 dimers induced by Pt clusters with stable three-dimensional morphologies can lower the energy barrier of O2 dissociation. Based on the microkinetics analysis, the O2 dissociation is the rate-determining step in the full CO oxidation cycle, and the introduction of Mn–Fe hetero-dimers at the interface is predicted to further enhance the low temperature CO oxidation activity of Pt/SmMn2O5 catalysts.</description><subject>Adsorption</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Cluster analysis</subject><subject>Cobalt</subject><subject>Dimensional stability</subject><subject>Dimers</subject><subject>Energy of dissociation</subject><subject>First principles</subject><subject>Iron</subject><subject>Low temperature</subject><subject>Manganese</subject><subject>Morphology</subject><subject>Mullite</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>Platinum</subject><subject>Trimers</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdj8tOwzAQRS0EEqWw4QsssWET6nhsJ1miipdUVCTKunKdcZsqsYvt8Ph7UkAsWM1dnHt0h5DznF3lDKqJKV1gFZNic0BGnAmWART88C8rcUxOYtwypipQMCLdoneNW9O0QRpT6E3qA1Jv6aqxvTOp8U639ClNnrtHx-eSNi5hsNpgpNYHugu-8wlr2vr3LGG3w6C_FdM59R9NrfcGqgfRW5M-T8mR1W3Es987Ji-3N4vpfTab3z1Mr2fZOi8hZXVVIy9VLYGDzlECFoLXRoCAla5sUTCeyxIVgCmtGDBhFCuslIwrqVgFY3L54x3mvfYY07JrosG21Q59H5d86LM8l7BHL_6hW9-H4ekfCkRZSQ5f0PloTg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Liu, Xiao</creator><creator>Yang, Jiaqiang</creator><creator>Shen, Gurong</creator><creator>Shen, Meiqing</creator><creator>Zhao, Yunkun</creator><creator>Cho, Kyeongjae</creator><creator>Shan, Bin</creator><creator>Chen, Rong</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20190101</creationdate><title>Tuning the structure of bifunctional Pt/SmMn2O5 interfaces for promoted low-temperature CO oxidation activity</title><author>Liu, Xiao ; Yang, Jiaqiang ; Shen, Gurong ; Shen, Meiqing ; Zhao, Yunkun ; Cho, Kyeongjae ; Shan, Bin ; Chen, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g183t-d9de286d5323a1e53e742dc4343ba9f7702158e633c8f4d534c607f5502656093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorption</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Cluster analysis</topic><topic>Cobalt</topic><topic>Dimensional stability</topic><topic>Dimers</topic><topic>Energy of dissociation</topic><topic>First principles</topic><topic>Iron</topic><topic>Low temperature</topic><topic>Manganese</topic><topic>Morphology</topic><topic>Mullite</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>Platinum</topic><topic>Trimers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Yang, Jiaqiang</creatorcontrib><creatorcontrib>Shen, Gurong</creatorcontrib><creatorcontrib>Shen, Meiqing</creatorcontrib><creatorcontrib>Zhao, Yunkun</creatorcontrib><creatorcontrib>Cho, Kyeongjae</creatorcontrib><creatorcontrib>Shan, Bin</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiao</au><au>Yang, Jiaqiang</au><au>Shen, Gurong</au><au>Shen, Meiqing</au><au>Zhao, Yunkun</au><au>Cho, Kyeongjae</au><au>Shan, Bin</au><au>Chen, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning the structure of bifunctional Pt/SmMn2O5 interfaces for promoted low-temperature CO oxidation activity</atitle><jtitle>Nanoscale</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>11</volume><issue>17</issue><spage>8150</spage><epage>8159</epage><pages>8150-8159</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The interfacial structure of metal–oxide composite catalysts plays a vital role in heterogeneous catalysis, which is crucial to the adsorption and activation of reactants. Herein, the interfacial effects of bare and Fe/Co/Ni doped SmMn2O5 mullite oxide supported Pt clusters on CO oxidation have been investigated by first-principles based microkinetics analysis. A robust formation of Pt/Mn2 trimer structures is demonstrated at the bifunctional interfaces irrespective of the Ptn cluster's size, which can provide spatially separated sites for CO adsorption and O2 dissociation. The binding strength of CO at the interfacial Pt sites is in the optimal range due to the charge transfer from Pt clusters to oxide, while the strong polarization of Mn2 dimers induced by Pt clusters with stable three-dimensional morphologies can lower the energy barrier of O2 dissociation. Based on the microkinetics analysis, the O2 dissociation is the rate-determining step in the full CO oxidation cycle, and the introduction of Mn–Fe hetero-dimers at the interface is predicted to further enhance the low temperature CO oxidation activity of Pt/SmMn2O5 catalysts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8nr09054h</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2019-01, Vol.11 (17), p.8150-8159
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2215011539
source Royal Society Of Chemistry Journals 2008-
subjects Adsorption
Catalysis
Catalysts
Charge transfer
Cluster analysis
Cobalt
Dimensional stability
Dimers
Energy of dissociation
First principles
Iron
Low temperature
Manganese
Morphology
Mullite
Nickel
Oxidation
Platinum
Trimers
title Tuning the structure of bifunctional Pt/SmMn2O5 interfaces for promoted low-temperature CO oxidation activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A40%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20the%20structure%20of%20bifunctional%20Pt/SmMn2O5%20interfaces%20for%20promoted%20low-temperature%20CO%20oxidation%20activity&rft.jtitle=Nanoscale&rft.au=Liu,%20Xiao&rft.date=2019-01-01&rft.volume=11&rft.issue=17&rft.spage=8150&rft.epage=8159&rft.pages=8150-8159&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr09054h&rft_dat=%3Cproquest%3E2215011539%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2215348952&rft_id=info:pmid/&rfr_iscdi=true