Research progress on analysis methods in electroencephalography-electromyography synchronous coupling

The motor nervous system transmits motion control information through nervous oscillations, which causes the synchronous oscillatory activity of the corresponding muscle to reflect the motion response information and give the cerebral cortex feedback, so that it can sense the state of the limbs. Thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sheng wu yi xue gong cheng xue za zhi 2019-04, Vol.36 (2), p.334-337
Hauptverfasser: Li, Sujiao, Liu, Su, Lan, He, Yu, Hongliu
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 337
container_issue 2
container_start_page 334
container_title Sheng wu yi xue gong cheng xue za zhi
container_volume 36
creator Li, Sujiao
Liu, Su
Lan, He
Yu, Hongliu
description The motor nervous system transmits motion control information through nervous oscillations, which causes the synchronous oscillatory activity of the corresponding muscle to reflect the motion response information and give the cerebral cortex feedback, so that it can sense the state of the limbs. This synchronous oscillatory activity can reflect connectivity information of electroencephalography-electromyography (EEG-EMG) functional coupling. The strength of the coupling is determined by various factors including the strength of muscle contraction, attention, motion intention etc. It is very significant to study motor functional evaluation and control methods to analyze the changes of EEG-EMG synchronous coupling caused by different factors. This article mainly introduces and compares coherence and Granger causality of linear methods, the mutual information and transfer entropy of nonlinear methods in EEG-EMG synchronous coupling, and summarizes the application of each method, so that researchers in related fields can understand the current research progress on analysis methods of EEG-EMG synchronous systematically.
doi_str_mv 10.7507/1001-5515.201804005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2213934659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2213934659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1343-80035587cbfb46578c022f84f21213133ff61af780c23139dfd6c0990f7f86893</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhnNQ3GXdXyBIwIuXrpOkadOjLH7BgiB6LmmabCttUpP20H9vFqsHT8O8PDzMOwhdEdjlHPI7AkASzgnfUSACUgB-htZ_6QptQ2grACogywS7QCtGgGQFZ2uk33TQ0qsGD94dvQ4BO4ulld0c2oB7PTauDri1WHdajd5pq_TQyC7CcmjmZIn7eQlwmK1qvLNuCli5aehae7xE50Z2QW-XuUEfjw_v--fk8Pr0sr8_JIqwlCUCgHEuclWZKs14LhRQakRqKKGEEcaMyYg0uQBF41rUps4UFAWY3IhMFGyDbn-8sczXpMNY9m1Quuuk1fGekkZNwaL6hN78Qz_d5GPvEyVoypiI8AZdL9RU9bouB9_20s_l7wPZN9Whcmo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282433821</pqid></control><display><type>article</type><title>Research progress on analysis methods in electroencephalography-electromyography synchronous coupling</title><source>MEDLINE</source><source>PubMed Central</source><creator>Li, Sujiao ; Liu, Su ; Lan, He ; Yu, Hongliu</creator><creatorcontrib>Li, Sujiao ; Liu, Su ; Lan, He ; Yu, Hongliu</creatorcontrib><description>The motor nervous system transmits motion control information through nervous oscillations, which causes the synchronous oscillatory activity of the corresponding muscle to reflect the motion response information and give the cerebral cortex feedback, so that it can sense the state of the limbs. This synchronous oscillatory activity can reflect connectivity information of electroencephalography-electromyography (EEG-EMG) functional coupling. The strength of the coupling is determined by various factors including the strength of muscle contraction, attention, motion intention etc. It is very significant to study motor functional evaluation and control methods to analyze the changes of EEG-EMG synchronous coupling caused by different factors. This article mainly introduces and compares coherence and Granger causality of linear methods, the mutual information and transfer entropy of nonlinear methods in EEG-EMG synchronous coupling, and summarizes the application of each method, so that researchers in related fields can understand the current research progress on analysis methods of EEG-EMG synchronous systematically.</description><identifier>ISSN: 1001-5515</identifier><identifier>DOI: 10.7507/1001-5515.201804005</identifier><identifier>PMID: 31016953</identifier><language>chi</language><publisher>China: Sichuan Society for Biomedical Engineering</publisher><subject>Cerebral cortex ; Control methods ; Coupling ; EEG ; Electroencephalography ; Electromyography ; Entropy (Information theory) ; Humans ; Information systems ; Motion control ; Motor Cortex - physiology ; Motor task performance ; Muscle contraction ; Muscle, Skeletal - physiology ; Muscles ; Muscular function ; Nervous system ; Oscillations</subject><ispartof>Sheng wu yi xue gong cheng xue za zhi, 2019-04, Vol.36 (2), p.334-337</ispartof><rights>Copyright Sichuan Society for Biomedical Engineering 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1343-80035587cbfb46578c022f84f21213133ff61af780c23139dfd6c0990f7f86893</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31016953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Sujiao</creatorcontrib><creatorcontrib>Liu, Su</creatorcontrib><creatorcontrib>Lan, He</creatorcontrib><creatorcontrib>Yu, Hongliu</creatorcontrib><title>Research progress on analysis methods in electroencephalography-electromyography synchronous coupling</title><title>Sheng wu yi xue gong cheng xue za zhi</title><addtitle>Sheng Wu Yi Xue Gong Cheng Xue Za Zhi</addtitle><description>The motor nervous system transmits motion control information through nervous oscillations, which causes the synchronous oscillatory activity of the corresponding muscle to reflect the motion response information and give the cerebral cortex feedback, so that it can sense the state of the limbs. This synchronous oscillatory activity can reflect connectivity information of electroencephalography-electromyography (EEG-EMG) functional coupling. The strength of the coupling is determined by various factors including the strength of muscle contraction, attention, motion intention etc. It is very significant to study motor functional evaluation and control methods to analyze the changes of EEG-EMG synchronous coupling caused by different factors. This article mainly introduces and compares coherence and Granger causality of linear methods, the mutual information and transfer entropy of nonlinear methods in EEG-EMG synchronous coupling, and summarizes the application of each method, so that researchers in related fields can understand the current research progress on analysis methods of EEG-EMG synchronous systematically.</description><subject>Cerebral cortex</subject><subject>Control methods</subject><subject>Coupling</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>Entropy (Information theory)</subject><subject>Humans</subject><subject>Information systems</subject><subject>Motion control</subject><subject>Motor Cortex - physiology</subject><subject>Motor task performance</subject><subject>Muscle contraction</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>Muscular function</subject><subject>Nervous system</subject><subject>Oscillations</subject><issn>1001-5515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE1LxDAQhnNQ3GXdXyBIwIuXrpOkadOjLH7BgiB6LmmabCttUpP20H9vFqsHT8O8PDzMOwhdEdjlHPI7AkASzgnfUSACUgB-htZ_6QptQ2grACogywS7QCtGgGQFZ2uk33TQ0qsGD94dvQ4BO4ulld0c2oB7PTauDri1WHdajd5pq_TQyC7CcmjmZIn7eQlwmK1qvLNuCli5aehae7xE50Z2QW-XuUEfjw_v--fk8Pr0sr8_JIqwlCUCgHEuclWZKs14LhRQakRqKKGEEcaMyYg0uQBF41rUps4UFAWY3IhMFGyDbn-8sczXpMNY9m1Quuuk1fGekkZNwaL6hN78Qz_d5GPvEyVoypiI8AZdL9RU9bouB9_20s_l7wPZN9Whcmo</recordid><startdate>20190425</startdate><enddate>20190425</enddate><creator>Li, Sujiao</creator><creator>Liu, Su</creator><creator>Lan, He</creator><creator>Yu, Hongliu</creator><general>Sichuan Society for Biomedical Engineering</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20190425</creationdate><title>Research progress on analysis methods in electroencephalography-electromyography synchronous coupling</title><author>Li, Sujiao ; Liu, Su ; Lan, He ; Yu, Hongliu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1343-80035587cbfb46578c022f84f21213133ff61af780c23139dfd6c0990f7f86893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2019</creationdate><topic>Cerebral cortex</topic><topic>Control methods</topic><topic>Coupling</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>Entropy (Information theory)</topic><topic>Humans</topic><topic>Information systems</topic><topic>Motion control</topic><topic>Motor Cortex - physiology</topic><topic>Motor task performance</topic><topic>Muscle contraction</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>Muscular function</topic><topic>Nervous system</topic><topic>Oscillations</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Sujiao</creatorcontrib><creatorcontrib>Liu, Su</creatorcontrib><creatorcontrib>Lan, He</creatorcontrib><creatorcontrib>Yu, Hongliu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Sheng wu yi xue gong cheng xue za zhi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Sujiao</au><au>Liu, Su</au><au>Lan, He</au><au>Yu, Hongliu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research progress on analysis methods in electroencephalography-electromyography synchronous coupling</atitle><jtitle>Sheng wu yi xue gong cheng xue za zhi</jtitle><addtitle>Sheng Wu Yi Xue Gong Cheng Xue Za Zhi</addtitle><date>2019-04-25</date><risdate>2019</risdate><volume>36</volume><issue>2</issue><spage>334</spage><epage>337</epage><pages>334-337</pages><issn>1001-5515</issn><abstract>The motor nervous system transmits motion control information through nervous oscillations, which causes the synchronous oscillatory activity of the corresponding muscle to reflect the motion response information and give the cerebral cortex feedback, so that it can sense the state of the limbs. This synchronous oscillatory activity can reflect connectivity information of electroencephalography-electromyography (EEG-EMG) functional coupling. The strength of the coupling is determined by various factors including the strength of muscle contraction, attention, motion intention etc. It is very significant to study motor functional evaluation and control methods to analyze the changes of EEG-EMG synchronous coupling caused by different factors. This article mainly introduces and compares coherence and Granger causality of linear methods, the mutual information and transfer entropy of nonlinear methods in EEG-EMG synchronous coupling, and summarizes the application of each method, so that researchers in related fields can understand the current research progress on analysis methods of EEG-EMG synchronous systematically.</abstract><cop>China</cop><pub>Sichuan Society for Biomedical Engineering</pub><pmid>31016953</pmid><doi>10.7507/1001-5515.201804005</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1001-5515
ispartof Sheng wu yi xue gong cheng xue za zhi, 2019-04, Vol.36 (2), p.334-337
issn 1001-5515
language chi
recordid cdi_proquest_miscellaneous_2213934659
source MEDLINE; PubMed Central
subjects Cerebral cortex
Control methods
Coupling
EEG
Electroencephalography
Electromyography
Entropy (Information theory)
Humans
Information systems
Motion control
Motor Cortex - physiology
Motor task performance
Muscle contraction
Muscle, Skeletal - physiology
Muscles
Muscular function
Nervous system
Oscillations
title Research progress on analysis methods in electroencephalography-electromyography synchronous coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20progress%20on%20analysis%20methods%20in%20electroencephalography-electromyography%20synchronous%20coupling&rft.jtitle=Sheng%20wu%20yi%20xue%20gong%20cheng%20xue%20za%20zhi&rft.au=Li,%20Sujiao&rft.date=2019-04-25&rft.volume=36&rft.issue=2&rft.spage=334&rft.epage=337&rft.pages=334-337&rft.issn=1001-5515&rft_id=info:doi/10.7507/1001-5515.201804005&rft_dat=%3Cproquest_pubme%3E2213934659%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2282433821&rft_id=info:pmid/31016953&rfr_iscdi=true