Structural determinants of coiled coil mechanics

The natural abundance of coiled coil (CC) motifs in the cytoskeleton and the extracellular matrix suggests that CCs play a crucial role in the bidirectional mechanobiochemical signaling between cells and the matrix. Their functional importance and structural simplicity has allowed the development of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2019-05, Vol.21 (18), p.9145-9149
Hauptverfasser: López-García, Patricia, Goktas, Melis, Bergues-Pupo, Ana E, Koksch, Beate, Varón Silva, Daniel, Blank, Kerstin G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9149
container_issue 18
container_start_page 9145
container_title Physical chemistry chemical physics : PCCP
container_volume 21
creator López-García, Patricia
Goktas, Melis
Bergues-Pupo, Ana E
Koksch, Beate
Varón Silva, Daniel
Blank, Kerstin G
description The natural abundance of coiled coil (CC) motifs in the cytoskeleton and the extracellular matrix suggests that CCs play a crucial role in the bidirectional mechanobiochemical signaling between cells and the matrix. Their functional importance and structural simplicity has allowed the development of numerous applications, such as protein-origami structures, drug delivery systems and biomaterials. With the goal of establishing CCs as nanomechanical building blocks, we investigated the importance of helix propensity and hydrophobic core packing on the mechanical stability of 4-heptad CC heterodimers. Using single-molecule force spectroscopy, we show that both parameters determine the force-induced dissociation in shear loading geometry; however, with different effects on the energy landscape. Decreasing the helix propensity lowers the transition barrier height, leading to a concomitant decrease in the distance to the transition state. In contrast, a less tightly packed hydrophobic core increases the distance to the transition state. We propose that this originates from a larger side chain dynamics, possible water intrusion at the interface as well as differences in solvation of the hydrophobic amino acids at the transition state. In conclusion, the different contributions of helix propensity and hydrophobic core packing need to be considered when tuning the mechanical properties of CCs for applications.
doi_str_mv 10.1039/c9cp00665f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2213930210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2221488065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-82a5709a7371a46a327012c872ec1a8a6d80acddd07c5de382546f92447327583</originalsourceid><addsrcrecordid>eNpd0EtLxDAUBeAgijNWN_4AKbgRoXrzTpZSHBUGFNR1iUmKHfoYk3Thv7fOjLNwde7i43A5CJ1juMFA9a3Vdg0gBK8P0BwzQQsNih3ubylm6CTGFQBgjukxmlEMWBDN5gheUxhtGoNpc-eTD13Tmz7FfKhzOzStd5vIO28_Td_YeIqOatNGf7bLDL0v7t_Kx2L5_PBU3i0LS5VKhSKGS9BGUokNE4YSCZhYJYm32CgjnAJjnXMgLXeeKsKZqDVhTE6UK5qhq23vOgxfo4-p6ppofdua3g9jrAjBVFMg0wIZuvxHV8MY-um7SRHMlALBJ3W9VTYMMQZfV-vQdCZ8Vxiq3x2rUpcvmx0XE77YVY4fnXd7-jcc_QHDu2qb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221488065</pqid></control><display><type>article</type><title>Structural determinants of coiled coil mechanics</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>López-García, Patricia ; Goktas, Melis ; Bergues-Pupo, Ana E ; Koksch, Beate ; Varón Silva, Daniel ; Blank, Kerstin G</creator><creatorcontrib>López-García, Patricia ; Goktas, Melis ; Bergues-Pupo, Ana E ; Koksch, Beate ; Varón Silva, Daniel ; Blank, Kerstin G</creatorcontrib><description>The natural abundance of coiled coil (CC) motifs in the cytoskeleton and the extracellular matrix suggests that CCs play a crucial role in the bidirectional mechanobiochemical signaling between cells and the matrix. Their functional importance and structural simplicity has allowed the development of numerous applications, such as protein-origami structures, drug delivery systems and biomaterials. With the goal of establishing CCs as nanomechanical building blocks, we investigated the importance of helix propensity and hydrophobic core packing on the mechanical stability of 4-heptad CC heterodimers. Using single-molecule force spectroscopy, we show that both parameters determine the force-induced dissociation in shear loading geometry; however, with different effects on the energy landscape. Decreasing the helix propensity lowers the transition barrier height, leading to a concomitant decrease in the distance to the transition state. In contrast, a less tightly packed hydrophobic core increases the distance to the transition state. We propose that this originates from a larger side chain dynamics, possible water intrusion at the interface as well as differences in solvation of the hydrophobic amino acids at the transition state. In conclusion, the different contributions of helix propensity and hydrophobic core packing need to be considered when tuning the mechanical properties of CCs for applications.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp00665f</identifier><identifier>PMID: 31016294</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Amino acids ; Biomedical materials ; Chain dynamics ; Coils ; Drug delivery systems ; Hydrophobicity ; Intrusion ; Mechanical properties ; Solvation</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019-05, Vol.21 (18), p.9145-9149</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-82a5709a7371a46a327012c872ec1a8a6d80acddd07c5de382546f92447327583</citedby><cites>FETCH-LOGICAL-c388t-82a5709a7371a46a327012c872ec1a8a6d80acddd07c5de382546f92447327583</cites><orcidid>0000-0002-9594-0497 ; 0000-0002-6062-3539 ; 0000-0003-2804-1923 ; 0000-0001-5410-6984 ; 0000-0001-5616-8900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31016294$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>López-García, Patricia</creatorcontrib><creatorcontrib>Goktas, Melis</creatorcontrib><creatorcontrib>Bergues-Pupo, Ana E</creatorcontrib><creatorcontrib>Koksch, Beate</creatorcontrib><creatorcontrib>Varón Silva, Daniel</creatorcontrib><creatorcontrib>Blank, Kerstin G</creatorcontrib><title>Structural determinants of coiled coil mechanics</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The natural abundance of coiled coil (CC) motifs in the cytoskeleton and the extracellular matrix suggests that CCs play a crucial role in the bidirectional mechanobiochemical signaling between cells and the matrix. Their functional importance and structural simplicity has allowed the development of numerous applications, such as protein-origami structures, drug delivery systems and biomaterials. With the goal of establishing CCs as nanomechanical building blocks, we investigated the importance of helix propensity and hydrophobic core packing on the mechanical stability of 4-heptad CC heterodimers. Using single-molecule force spectroscopy, we show that both parameters determine the force-induced dissociation in shear loading geometry; however, with different effects on the energy landscape. Decreasing the helix propensity lowers the transition barrier height, leading to a concomitant decrease in the distance to the transition state. In contrast, a less tightly packed hydrophobic core increases the distance to the transition state. We propose that this originates from a larger side chain dynamics, possible water intrusion at the interface as well as differences in solvation of the hydrophobic amino acids at the transition state. In conclusion, the different contributions of helix propensity and hydrophobic core packing need to be considered when tuning the mechanical properties of CCs for applications.</description><subject>Amino acids</subject><subject>Biomedical materials</subject><subject>Chain dynamics</subject><subject>Coils</subject><subject>Drug delivery systems</subject><subject>Hydrophobicity</subject><subject>Intrusion</subject><subject>Mechanical properties</subject><subject>Solvation</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0EtLxDAUBeAgijNWN_4AKbgRoXrzTpZSHBUGFNR1iUmKHfoYk3Thv7fOjLNwde7i43A5CJ1juMFA9a3Vdg0gBK8P0BwzQQsNih3ubylm6CTGFQBgjukxmlEMWBDN5gheUxhtGoNpc-eTD13Tmz7FfKhzOzStd5vIO28_Td_YeIqOatNGf7bLDL0v7t_Kx2L5_PBU3i0LS5VKhSKGS9BGUokNE4YSCZhYJYm32CgjnAJjnXMgLXeeKsKZqDVhTE6UK5qhq23vOgxfo4-p6ppofdua3g9jrAjBVFMg0wIZuvxHV8MY-um7SRHMlALBJ3W9VTYMMQZfV-vQdCZ8Vxiq3x2rUpcvmx0XE77YVY4fnXd7-jcc_QHDu2qb</recordid><startdate>20190508</startdate><enddate>20190508</enddate><creator>López-García, Patricia</creator><creator>Goktas, Melis</creator><creator>Bergues-Pupo, Ana E</creator><creator>Koksch, Beate</creator><creator>Varón Silva, Daniel</creator><creator>Blank, Kerstin G</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9594-0497</orcidid><orcidid>https://orcid.org/0000-0002-6062-3539</orcidid><orcidid>https://orcid.org/0000-0003-2804-1923</orcidid><orcidid>https://orcid.org/0000-0001-5410-6984</orcidid><orcidid>https://orcid.org/0000-0001-5616-8900</orcidid></search><sort><creationdate>20190508</creationdate><title>Structural determinants of coiled coil mechanics</title><author>López-García, Patricia ; Goktas, Melis ; Bergues-Pupo, Ana E ; Koksch, Beate ; Varón Silva, Daniel ; Blank, Kerstin G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-82a5709a7371a46a327012c872ec1a8a6d80acddd07c5de382546f92447327583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino acids</topic><topic>Biomedical materials</topic><topic>Chain dynamics</topic><topic>Coils</topic><topic>Drug delivery systems</topic><topic>Hydrophobicity</topic><topic>Intrusion</topic><topic>Mechanical properties</topic><topic>Solvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-García, Patricia</creatorcontrib><creatorcontrib>Goktas, Melis</creatorcontrib><creatorcontrib>Bergues-Pupo, Ana E</creatorcontrib><creatorcontrib>Koksch, Beate</creatorcontrib><creatorcontrib>Varón Silva, Daniel</creatorcontrib><creatorcontrib>Blank, Kerstin G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-García, Patricia</au><au>Goktas, Melis</au><au>Bergues-Pupo, Ana E</au><au>Koksch, Beate</au><au>Varón Silva, Daniel</au><au>Blank, Kerstin G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural determinants of coiled coil mechanics</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2019-05-08</date><risdate>2019</risdate><volume>21</volume><issue>18</issue><spage>9145</spage><epage>9149</epage><pages>9145-9149</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The natural abundance of coiled coil (CC) motifs in the cytoskeleton and the extracellular matrix suggests that CCs play a crucial role in the bidirectional mechanobiochemical signaling between cells and the matrix. Their functional importance and structural simplicity has allowed the development of numerous applications, such as protein-origami structures, drug delivery systems and biomaterials. With the goal of establishing CCs as nanomechanical building blocks, we investigated the importance of helix propensity and hydrophobic core packing on the mechanical stability of 4-heptad CC heterodimers. Using single-molecule force spectroscopy, we show that both parameters determine the force-induced dissociation in shear loading geometry; however, with different effects on the energy landscape. Decreasing the helix propensity lowers the transition barrier height, leading to a concomitant decrease in the distance to the transition state. In contrast, a less tightly packed hydrophobic core increases the distance to the transition state. We propose that this originates from a larger side chain dynamics, possible water intrusion at the interface as well as differences in solvation of the hydrophobic amino acids at the transition state. In conclusion, the different contributions of helix propensity and hydrophobic core packing need to be considered when tuning the mechanical properties of CCs for applications.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31016294</pmid><doi>10.1039/c9cp00665f</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9594-0497</orcidid><orcidid>https://orcid.org/0000-0002-6062-3539</orcidid><orcidid>https://orcid.org/0000-0003-2804-1923</orcidid><orcidid>https://orcid.org/0000-0001-5410-6984</orcidid><orcidid>https://orcid.org/0000-0001-5616-8900</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2019-05, Vol.21 (18), p.9145-9149
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2213930210
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Amino acids
Biomedical materials
Chain dynamics
Coils
Drug delivery systems
Hydrophobicity
Intrusion
Mechanical properties
Solvation
title Structural determinants of coiled coil mechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20determinants%20of%20coiled%20coil%20mechanics&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=L%C3%B3pez-Garc%C3%ADa,%20Patricia&rft.date=2019-05-08&rft.volume=21&rft.issue=18&rft.spage=9145&rft.epage=9149&rft.pages=9145-9149&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp00665f&rft_dat=%3Cproquest_cross%3E2221488065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2221488065&rft_id=info:pmid/31016294&rfr_iscdi=true