Artificial intelligence in healthcare
Artificial intelligence (AI) is gradually changing medical practice. With recent progress in digitized data acquisition, machine learning and computing infrastructure, AI applications are expanding into areas that were previously thought to be only the province of human experts. In this Review Artic...
Gespeichert in:
Veröffentlicht in: | Nature biomedical engineering 2018-10, Vol.2 (10), p.719-731 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 731 |
---|---|
container_issue | 10 |
container_start_page | 719 |
container_title | Nature biomedical engineering |
container_volume | 2 |
creator | Yu, Kun-Hsing Beam, Andrew L. Kohane, Isaac S. |
description | Artificial intelligence (AI) is gradually changing medical practice. With recent progress in digitized data acquisition, machine learning and computing infrastructure, AI applications are expanding into areas that were previously thought to be only the province of human experts. In this Review Article, we outline recent breakthroughs in AI technologies and their biomedical applications, identify the challenges for further progress in medical AI systems, and summarize the economic, legal and social implications of AI in healthcare.
This Review summarizes the medical applications of artificial intelligence, and its economic, legal and social implications for healthcare. |
doi_str_mv | 10.1038/s41551-018-0305-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2213917337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2213917337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-390231587a0c56174e3e7cf4a25660cf44736c5d788ec508aa2a12e208ae84593</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoVmp_gBcpiOBlNZPZbLLHUvyCghcFbyGms-2W7W5Ndg_215uy9QPBU96QZ94MD2NnwK-Bo74JKUgJCQedcOQy2R6wEwFSJTrNXg9_5QEbhbDinEOOaa7kMRsgcJCZhBN2OfFtWZSutNW4rFuqqnJBtaN4GS_JVu3SWU-n7KiwVaDR_hyyl7vb5-lDMnu6f5xOZolDJdoEcy4QpFaWO5mBSglJuSK1QmYZjyFVmDk5V1qTk1xbKywIEjGRTmWOQ3bV9258895RaM26DC4uZWtqumCEAMxBIaqIXvxBV03n67idEajzTEvMdxT0lPNNCJ4Ks_Hl2voPA9zsNJpeo4kazU6j2caZ831z97am-ffEl7QIiB4I8alekP_5-v_WT4pbemo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389685397</pqid></control><display><type>article</type><title>Artificial intelligence in healthcare</title><source>SpringerNature Journals</source><creator>Yu, Kun-Hsing ; Beam, Andrew L. ; Kohane, Isaac S.</creator><creatorcontrib>Yu, Kun-Hsing ; Beam, Andrew L. ; Kohane, Isaac S.</creatorcontrib><description>Artificial intelligence (AI) is gradually changing medical practice. With recent progress in digitized data acquisition, machine learning and computing infrastructure, AI applications are expanding into areas that were previously thought to be only the province of human experts. In this Review Article, we outline recent breakthroughs in AI technologies and their biomedical applications, identify the challenges for further progress in medical AI systems, and summarize the economic, legal and social implications of AI in healthcare.
This Review summarizes the medical applications of artificial intelligence, and its economic, legal and social implications for healthcare.</description><identifier>ISSN: 2157-846X</identifier><identifier>EISSN: 2157-846X</identifier><identifier>DOI: 10.1038/s41551-018-0305-z</identifier><identifier>PMID: 31015651</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1305 ; 631/114/2397 ; 631/114/2413 ; Artificial intelligence ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedical materials ; Biomedicine ; Data acquisition ; Health care ; Learning algorithms ; Machine learning ; Medical electronics ; Review Article ; Social impact</subject><ispartof>Nature biomedical engineering, 2018-10, Vol.2 (10), p.719-731</ispartof><rights>Springer Nature Limited 2018</rights><rights>Springer Nature Limited 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-390231587a0c56174e3e7cf4a25660cf44736c5d788ec508aa2a12e208ae84593</citedby><cites>FETCH-LOGICAL-c372t-390231587a0c56174e3e7cf4a25660cf44736c5d788ec508aa2a12e208ae84593</cites><orcidid>0000-0001-9892-8218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41551-018-0305-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41551-018-0305-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31015651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Kun-Hsing</creatorcontrib><creatorcontrib>Beam, Andrew L.</creatorcontrib><creatorcontrib>Kohane, Isaac S.</creatorcontrib><title>Artificial intelligence in healthcare</title><title>Nature biomedical engineering</title><addtitle>Nat Biomed Eng</addtitle><addtitle>Nat Biomed Eng</addtitle><description>Artificial intelligence (AI) is gradually changing medical practice. With recent progress in digitized data acquisition, machine learning and computing infrastructure, AI applications are expanding into areas that were previously thought to be only the province of human experts. In this Review Article, we outline recent breakthroughs in AI technologies and their biomedical applications, identify the challenges for further progress in medical AI systems, and summarize the economic, legal and social implications of AI in healthcare.
This Review summarizes the medical applications of artificial intelligence, and its economic, legal and social implications for healthcare.</description><subject>631/114/1305</subject><subject>631/114/2397</subject><subject>631/114/2413</subject><subject>Artificial intelligence</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedical materials</subject><subject>Biomedicine</subject><subject>Data acquisition</subject><subject>Health care</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medical electronics</subject><subject>Review Article</subject><subject>Social impact</subject><issn>2157-846X</issn><issn>2157-846X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoVmp_gBcpiOBlNZPZbLLHUvyCghcFbyGms-2W7W5Ndg_215uy9QPBU96QZ94MD2NnwK-Bo74JKUgJCQedcOQy2R6wEwFSJTrNXg9_5QEbhbDinEOOaa7kMRsgcJCZhBN2OfFtWZSutNW4rFuqqnJBtaN4GS_JVu3SWU-n7KiwVaDR_hyyl7vb5-lDMnu6f5xOZolDJdoEcy4QpFaWO5mBSglJuSK1QmYZjyFVmDk5V1qTk1xbKywIEjGRTmWOQ3bV9258895RaM26DC4uZWtqumCEAMxBIaqIXvxBV03n67idEajzTEvMdxT0lPNNCJ4Ks_Hl2voPA9zsNJpeo4kazU6j2caZ831z97am-ffEl7QIiB4I8alekP_5-v_WT4pbemo</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Yu, Kun-Hsing</creator><creator>Beam, Andrew L.</creator><creator>Kohane, Isaac S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9892-8218</orcidid></search><sort><creationdate>20181001</creationdate><title>Artificial intelligence in healthcare</title><author>Yu, Kun-Hsing ; Beam, Andrew L. ; Kohane, Isaac S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-390231587a0c56174e3e7cf4a25660cf44736c5d788ec508aa2a12e208ae84593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/114/1305</topic><topic>631/114/2397</topic><topic>631/114/2413</topic><topic>Artificial intelligence</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedical materials</topic><topic>Biomedicine</topic><topic>Data acquisition</topic><topic>Health care</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medical electronics</topic><topic>Review Article</topic><topic>Social impact</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Kun-Hsing</creatorcontrib><creatorcontrib>Beam, Andrew L.</creatorcontrib><creatorcontrib>Kohane, Isaac S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Kun-Hsing</au><au>Beam, Andrew L.</au><au>Kohane, Isaac S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence in healthcare</atitle><jtitle>Nature biomedical engineering</jtitle><stitle>Nat Biomed Eng</stitle><addtitle>Nat Biomed Eng</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>2</volume><issue>10</issue><spage>719</spage><epage>731</epage><pages>719-731</pages><issn>2157-846X</issn><eissn>2157-846X</eissn><abstract>Artificial intelligence (AI) is gradually changing medical practice. With recent progress in digitized data acquisition, machine learning and computing infrastructure, AI applications are expanding into areas that were previously thought to be only the province of human experts. In this Review Article, we outline recent breakthroughs in AI technologies and their biomedical applications, identify the challenges for further progress in medical AI systems, and summarize the economic, legal and social implications of AI in healthcare.
This Review summarizes the medical applications of artificial intelligence, and its economic, legal and social implications for healthcare.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31015651</pmid><doi>10.1038/s41551-018-0305-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9892-8218</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2157-846X |
ispartof | Nature biomedical engineering, 2018-10, Vol.2 (10), p.719-731 |
issn | 2157-846X 2157-846X |
language | eng |
recordid | cdi_proquest_miscellaneous_2213917337 |
source | SpringerNature Journals |
subjects | 631/114/1305 631/114/2397 631/114/2413 Artificial intelligence Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedical materials Biomedicine Data acquisition Health care Learning algorithms Machine learning Medical electronics Review Article Social impact |
title | Artificial intelligence in healthcare |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20in%20healthcare&rft.jtitle=Nature%20biomedical%20engineering&rft.au=Yu,%20Kun-Hsing&rft.date=2018-10-01&rft.volume=2&rft.issue=10&rft.spage=719&rft.epage=731&rft.pages=719-731&rft.issn=2157-846X&rft.eissn=2157-846X&rft_id=info:doi/10.1038/s41551-018-0305-z&rft_dat=%3Cproquest_cross%3E2213917337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389685397&rft_id=info:pmid/31015651&rfr_iscdi=true |