Finite elasto-plastic deformation. I - Theory and numerical examples

It is demonstrated that the problem of elasto-plastic finite deformation is governed by a quasi-linear model irrespective of deformation magnitude. This feature follows from the adoption of a rate viewpoint toward finite deformation analysis in an Eulerian reference frame. Objectivity of the formula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 1974-03, Vol.10, p.321-339
Hauptverfasser: OSIAS, J R, Swedlow, J L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue
container_start_page 321
container_title International journal of solids and structures
container_volume 10
creator OSIAS, J R
Swedlow, J L
description It is demonstrated that the problem of elasto-plastic finite deformation is governed by a quasi-linear model irrespective of deformation magnitude. This feature follows from the adoption of a rate viewpoint toward finite deformation analysis in an Eulerian reference frame. Objectivity of the formulation is preserved by introduction of a frame-invariant stress rate. Equations for piece-wise linear incremental finite element analysis are developed by application of the Galerkin method to the instantaneously linear governing differential equations of the quasi-linear model. Numerical solution capability has been established for problems of plane strain and plane stress. The accuracy of the numerical analysis is demonstrated by consideration of a number of problems of homogeneous finite deformation admitting comparative analytic solution. It is shown that accurate, objective numerical solutions can be obtained for problems involving dimensional changes of an order of magnitude and rotations of a full radian.
doi_str_mv 10.1016/0020-7683(74)90081-X
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_22129070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22129070</sourcerecordid><originalsourceid>FETCH-LOGICAL-p99t-101696ccc5ffcfc8829c940171af4d301f438e82f38003d2da72565a952db3e33</originalsourceid><addsrcrecordid>eNo9jj9LAzEcQDMoWKvfwCGT6JD6S3J_klGq1UKhyw3dSkx-wUjucl5yoN9eiuL04A2PR8gNhxUH3jwACGBto-RdW91rAMXZ4Yws_vUFucz5AwAqqWFBnjZhCAUpRpNLYuMJwVKHPk29KSENK7qljHbvmKZvagZHh7nHKVgTKX6ZfoyYr8i5NzHj9R-XpNs8d-tXttu_bNePOzZqXdhpTzfW2tp7661SQltdAW-58ZWTwH0lFSrhpQKQTjjTirqpja6Fe5Mo5ZLc_mbHKX3OmMuxD9lijGbANOejEFxoaEH-AFM-TBM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>22129070</pqid></control><display><type>article</type><title>Finite elasto-plastic deformation. I - Theory and numerical examples</title><source>Elsevier ScienceDirect Journals</source><creator>OSIAS, J R ; Swedlow, J L</creator><creatorcontrib>OSIAS, J R ; Swedlow, J L</creatorcontrib><description>It is demonstrated that the problem of elasto-plastic finite deformation is governed by a quasi-linear model irrespective of deformation magnitude. This feature follows from the adoption of a rate viewpoint toward finite deformation analysis in an Eulerian reference frame. Objectivity of the formulation is preserved by introduction of a frame-invariant stress rate. Equations for piece-wise linear incremental finite element analysis are developed by application of the Galerkin method to the instantaneously linear governing differential equations of the quasi-linear model. Numerical solution capability has been established for problems of plane strain and plane stress. The accuracy of the numerical analysis is demonstrated by consideration of a number of problems of homogeneous finite deformation admitting comparative analytic solution. It is shown that accurate, objective numerical solutions can be obtained for problems involving dimensional changes of an order of magnitude and rotations of a full radian.</description><identifier>ISSN: 0020-7683</identifier><identifier>DOI: 10.1016/0020-7683(74)90081-X</identifier><language>eng</language><ispartof>International journal of solids and structures, 1974-03, Vol.10, p.321-339</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>OSIAS, J R</creatorcontrib><creatorcontrib>Swedlow, J L</creatorcontrib><title>Finite elasto-plastic deformation. I - Theory and numerical examples</title><title>International journal of solids and structures</title><description>It is demonstrated that the problem of elasto-plastic finite deformation is governed by a quasi-linear model irrespective of deformation magnitude. This feature follows from the adoption of a rate viewpoint toward finite deformation analysis in an Eulerian reference frame. Objectivity of the formulation is preserved by introduction of a frame-invariant stress rate. Equations for piece-wise linear incremental finite element analysis are developed by application of the Galerkin method to the instantaneously linear governing differential equations of the quasi-linear model. Numerical solution capability has been established for problems of plane strain and plane stress. The accuracy of the numerical analysis is demonstrated by consideration of a number of problems of homogeneous finite deformation admitting comparative analytic solution. It is shown that accurate, objective numerical solutions can be obtained for problems involving dimensional changes of an order of magnitude and rotations of a full radian.</description><issn>0020-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1974</creationdate><recordtype>article</recordtype><recordid>eNo9jj9LAzEcQDMoWKvfwCGT6JD6S3J_klGq1UKhyw3dSkx-wUjucl5yoN9eiuL04A2PR8gNhxUH3jwACGBto-RdW91rAMXZ4Yws_vUFucz5AwAqqWFBnjZhCAUpRpNLYuMJwVKHPk29KSENK7qljHbvmKZvagZHh7nHKVgTKX6ZfoyYr8i5NzHj9R-XpNs8d-tXttu_bNePOzZqXdhpTzfW2tp7661SQltdAW-58ZWTwH0lFSrhpQKQTjjTirqpja6Fe5Mo5ZLc_mbHKX3OmMuxD9lijGbANOejEFxoaEH-AFM-TBM</recordid><startdate>19740301</startdate><enddate>19740301</enddate><creator>OSIAS, J R</creator><creator>Swedlow, J L</creator><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19740301</creationdate><title>Finite elasto-plastic deformation. I - Theory and numerical examples</title><author>OSIAS, J R ; Swedlow, J L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p99t-101696ccc5ffcfc8829c940171af4d301f438e82f38003d2da72565a952db3e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1974</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>OSIAS, J R</creatorcontrib><creatorcontrib>Swedlow, J L</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>OSIAS, J R</au><au>Swedlow, J L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite elasto-plastic deformation. I - Theory and numerical examples</atitle><jtitle>International journal of solids and structures</jtitle><date>1974-03-01</date><risdate>1974</risdate><volume>10</volume><spage>321</spage><epage>339</epage><pages>321-339</pages><issn>0020-7683</issn><abstract>It is demonstrated that the problem of elasto-plastic finite deformation is governed by a quasi-linear model irrespective of deformation magnitude. This feature follows from the adoption of a rate viewpoint toward finite deformation analysis in an Eulerian reference frame. Objectivity of the formulation is preserved by introduction of a frame-invariant stress rate. Equations for piece-wise linear incremental finite element analysis are developed by application of the Galerkin method to the instantaneously linear governing differential equations of the quasi-linear model. Numerical solution capability has been established for problems of plane strain and plane stress. The accuracy of the numerical analysis is demonstrated by consideration of a number of problems of homogeneous finite deformation admitting comparative analytic solution. It is shown that accurate, objective numerical solutions can be obtained for problems involving dimensional changes of an order of magnitude and rotations of a full radian.</abstract><doi>10.1016/0020-7683(74)90081-X</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 1974-03, Vol.10, p.321-339
issn 0020-7683
language eng
recordid cdi_proquest_miscellaneous_22129070
source Elsevier ScienceDirect Journals
title Finite elasto-plastic deformation. I - Theory and numerical examples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20elasto-plastic%20deformation.%20I%20-%20Theory%20and%20numerical%20examples&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=OSIAS,%20J%20R&rft.date=1974-03-01&rft.volume=10&rft.spage=321&rft.epage=339&rft.pages=321-339&rft.issn=0020-7683&rft_id=info:doi/10.1016/0020-7683(74)90081-X&rft_dat=%3Cproquest%3E22129070%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=22129070&rft_id=info:pmid/&rfr_iscdi=true