Three‐dimensional static optical coherence elastography based on inverse compositional Gauss‐Newton digital volume correlation

The three‐dimensional (3D) mechanical properties characterization of tissue is essential for physiological and pathological studies, as biological tissue is mostly heterogeneous and anisotropic. A digital volume correlation (DVC)‐based 3D optical coherence elastography (OCE) method is developed to m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biophotonics 2019-09, Vol.12 (9), p.e201800422-n/a
Hauptverfasser: Meng, Fanchao, Chen, Cheng, Hui, Shun, Wang, Jingbo, Feng, Yvlong, Sun, Cuiru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page e201800422
container_title Journal of biophotonics
container_volume 12
creator Meng, Fanchao
Chen, Cheng
Hui, Shun
Wang, Jingbo
Feng, Yvlong
Sun, Cuiru
description The three‐dimensional (3D) mechanical properties characterization of tissue is essential for physiological and pathological studies, as biological tissue is mostly heterogeneous and anisotropic. A digital volume correlation (DVC)‐based 3D optical coherence elastography (OCE) method is developed to measure the 3D displacement and strain tensors. The DVC algorithm includes a zero‐mean normalized cross‐correlation criterion‐based coarse search regime, an inverse compositional Gauss‐Newton fine search algorithm and a local ternary quadratic polynomial fitting strain calculation method. A 3D optical coherence tomography (OCT) scanning protocol is proposed through theoretical analysis and experimental verification. Measurement errors of the DVC‐based 3D OCE method are evaluated to be less than 2.0 μm for displacements and 0.30% for strains by rigid body motion experiments. The 3D displacements and strains of a phantom and a specimen of chicken breast tissue under compression are measured. Results of the phantom show a good agreement with theoretical analysis and tensile testing. The strains of the chicken breast tissue indicate anisotropic biomechanical properties. This study provides an effective method for 3D biomechanical property studies of soft tissue and improves the development of 3D OCE techniques. A three‐dimensional (3D) optical coherence elastography (OCE) technique is developed by integrating a specific coarse‐fine search digital volume correlation (DVC) algorithm and an optical coherence tomography (OCT) imaging. A guidance for choosing the optimal number of OCT line scans is proposed by theoretical analysis and experimental verification. This DVC‐based OCE method has the potential for high accurate 3D displacement and strain tensor measurement of heterogeneous and anisotropic biological tissue.
doi_str_mv 10.1002/jbio.201800422
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2212719981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2283193185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3732-f80b7df5932124aef3d05409cdf15fa8d88ae019479801c37a3561aade8ed4e83</originalsourceid><addsrcrecordid>eNqFkUFLwzAYhoMoTqdXj1Lw4qUzado1PerQORnuMsFbSZuvW0bb1KTd2E38Bf5Gf4kpnRO8eMmXhOd94ONF6ILgAcHYu1klUg08TBjGvucdoBPChr6Lhz473N_paw-dGrPCeIhpQI9Rj9osC_zwBH3Mlxrg6_1TyAJKI1XJc8fUvJapoyp72meqlqChTMGBnJtaLTSvllsn4QaEo0pHlmvQBixXVMrIupOMeWOMFT_DpraQkAtZ2--1ypuiZbW2tpY9Q0cZzw2c72YfvTzcz0eP7nQ2noxup25KQ-q5GcNJKLIgoh7xfA4ZFTjwcZSKjAQZZ4IxDphEfhgxTGyG02BIOBfAQPjAaB9dd95Kq7cGTB0X0qSQ57wE1ZjYs96QRBEjFr36g65Uo-1WLcUoiShhgaUGHZVqZYyGLK60LLjexgTHbTtx2068b8cGLnfaJilA7PGfOiwQdcBG5rD9Rxc_3U1mv_Jv2GmgsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283193185</pqid></control><display><type>article</type><title>Three‐dimensional static optical coherence elastography based on inverse compositional Gauss‐Newton digital volume correlation</title><source>Wiley Online Library All Journals</source><creator>Meng, Fanchao ; Chen, Cheng ; Hui, Shun ; Wang, Jingbo ; Feng, Yvlong ; Sun, Cuiru</creator><creatorcontrib>Meng, Fanchao ; Chen, Cheng ; Hui, Shun ; Wang, Jingbo ; Feng, Yvlong ; Sun, Cuiru</creatorcontrib><description>The three‐dimensional (3D) mechanical properties characterization of tissue is essential for physiological and pathological studies, as biological tissue is mostly heterogeneous and anisotropic. A digital volume correlation (DVC)‐based 3D optical coherence elastography (OCE) method is developed to measure the 3D displacement and strain tensors. The DVC algorithm includes a zero‐mean normalized cross‐correlation criterion‐based coarse search regime, an inverse compositional Gauss‐Newton fine search algorithm and a local ternary quadratic polynomial fitting strain calculation method. A 3D optical coherence tomography (OCT) scanning protocol is proposed through theoretical analysis and experimental verification. Measurement errors of the DVC‐based 3D OCE method are evaluated to be less than 2.0 μm for displacements and 0.30% for strains by rigid body motion experiments. The 3D displacements and strains of a phantom and a specimen of chicken breast tissue under compression are measured. Results of the phantom show a good agreement with theoretical analysis and tensile testing. The strains of the chicken breast tissue indicate anisotropic biomechanical properties. This study provides an effective method for 3D biomechanical property studies of soft tissue and improves the development of 3D OCE techniques. A three‐dimensional (3D) optical coherence elastography (OCE) technique is developed by integrating a specific coarse‐fine search digital volume correlation (DVC) algorithm and an optical coherence tomography (OCT) imaging. A guidance for choosing the optimal number of OCT line scans is proposed by theoretical analysis and experimental verification. This DVC‐based OCE method has the potential for high accurate 3D displacement and strain tensor measurement of heterogeneous and anisotropic biological tissue.</description><identifier>ISSN: 1864-063X</identifier><identifier>EISSN: 1864-0648</identifier><identifier>DOI: 10.1002/jbio.201800422</identifier><identifier>PMID: 31008547</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>3D full‐field displacement ; 3D full‐field strain ; Algorithms ; Animal tissues ; Anisotropy ; Biomechanics ; Chickens ; Compression ; Compression tests ; Cross correlation ; digital volume correlation ; Displacement ; Mathematical analysis ; Mechanical properties ; optical coherence elastography ; Optical Coherence Tomography ; Polynomials ; Poultry ; Rigid structures ; Rigid-body dynamics ; Search algorithms ; Soft tissues ; Tensors ; Theoretical analysis ; Three dimensional bodies ; Three dimensional motion</subject><ispartof>Journal of biophotonics, 2019-09, Vol.12 (9), p.e201800422-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3732-f80b7df5932124aef3d05409cdf15fa8d88ae019479801c37a3561aade8ed4e83</citedby><cites>FETCH-LOGICAL-c3732-f80b7df5932124aef3d05409cdf15fa8d88ae019479801c37a3561aade8ed4e83</cites><orcidid>0000-0003-1827-116X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbio.201800422$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbio.201800422$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31008547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Fanchao</creatorcontrib><creatorcontrib>Chen, Cheng</creatorcontrib><creatorcontrib>Hui, Shun</creatorcontrib><creatorcontrib>Wang, Jingbo</creatorcontrib><creatorcontrib>Feng, Yvlong</creatorcontrib><creatorcontrib>Sun, Cuiru</creatorcontrib><title>Three‐dimensional static optical coherence elastography based on inverse compositional Gauss‐Newton digital volume correlation</title><title>Journal of biophotonics</title><addtitle>J Biophotonics</addtitle><description>The three‐dimensional (3D) mechanical properties characterization of tissue is essential for physiological and pathological studies, as biological tissue is mostly heterogeneous and anisotropic. A digital volume correlation (DVC)‐based 3D optical coherence elastography (OCE) method is developed to measure the 3D displacement and strain tensors. The DVC algorithm includes a zero‐mean normalized cross‐correlation criterion‐based coarse search regime, an inverse compositional Gauss‐Newton fine search algorithm and a local ternary quadratic polynomial fitting strain calculation method. A 3D optical coherence tomography (OCT) scanning protocol is proposed through theoretical analysis and experimental verification. Measurement errors of the DVC‐based 3D OCE method are evaluated to be less than 2.0 μm for displacements and 0.30% for strains by rigid body motion experiments. The 3D displacements and strains of a phantom and a specimen of chicken breast tissue under compression are measured. Results of the phantom show a good agreement with theoretical analysis and tensile testing. The strains of the chicken breast tissue indicate anisotropic biomechanical properties. This study provides an effective method for 3D biomechanical property studies of soft tissue and improves the development of 3D OCE techniques. A three‐dimensional (3D) optical coherence elastography (OCE) technique is developed by integrating a specific coarse‐fine search digital volume correlation (DVC) algorithm and an optical coherence tomography (OCT) imaging. A guidance for choosing the optimal number of OCT line scans is proposed by theoretical analysis and experimental verification. This DVC‐based OCE method has the potential for high accurate 3D displacement and strain tensor measurement of heterogeneous and anisotropic biological tissue.</description><subject>3D full‐field displacement</subject><subject>3D full‐field strain</subject><subject>Algorithms</subject><subject>Animal tissues</subject><subject>Anisotropy</subject><subject>Biomechanics</subject><subject>Chickens</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Cross correlation</subject><subject>digital volume correlation</subject><subject>Displacement</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>optical coherence elastography</subject><subject>Optical Coherence Tomography</subject><subject>Polynomials</subject><subject>Poultry</subject><subject>Rigid structures</subject><subject>Rigid-body dynamics</subject><subject>Search algorithms</subject><subject>Soft tissues</subject><subject>Tensors</subject><subject>Theoretical analysis</subject><subject>Three dimensional bodies</subject><subject>Three dimensional motion</subject><issn>1864-063X</issn><issn>1864-0648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkUFLwzAYhoMoTqdXj1Lw4qUzado1PerQORnuMsFbSZuvW0bb1KTd2E38Bf5Gf4kpnRO8eMmXhOd94ONF6ILgAcHYu1klUg08TBjGvucdoBPChr6Lhz473N_paw-dGrPCeIhpQI9Rj9osC_zwBH3Mlxrg6_1TyAJKI1XJc8fUvJapoyp72meqlqChTMGBnJtaLTSvllsn4QaEo0pHlmvQBixXVMrIupOMeWOMFT_DpraQkAtZ2--1ypuiZbW2tpY9Q0cZzw2c72YfvTzcz0eP7nQ2noxup25KQ-q5GcNJKLIgoh7xfA4ZFTjwcZSKjAQZZ4IxDphEfhgxTGyG02BIOBfAQPjAaB9dd95Kq7cGTB0X0qSQ57wE1ZjYs96QRBEjFr36g65Uo-1WLcUoiShhgaUGHZVqZYyGLK60LLjexgTHbTtx2068b8cGLnfaJilA7PGfOiwQdcBG5rD9Rxc_3U1mv_Jv2GmgsA</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Meng, Fanchao</creator><creator>Chen, Cheng</creator><creator>Hui, Shun</creator><creator>Wang, Jingbo</creator><creator>Feng, Yvlong</creator><creator>Sun, Cuiru</creator><general>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1827-116X</orcidid></search><sort><creationdate>201909</creationdate><title>Three‐dimensional static optical coherence elastography based on inverse compositional Gauss‐Newton digital volume correlation</title><author>Meng, Fanchao ; Chen, Cheng ; Hui, Shun ; Wang, Jingbo ; Feng, Yvlong ; Sun, Cuiru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3732-f80b7df5932124aef3d05409cdf15fa8d88ae019479801c37a3561aade8ed4e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D full‐field displacement</topic><topic>3D full‐field strain</topic><topic>Algorithms</topic><topic>Animal tissues</topic><topic>Anisotropy</topic><topic>Biomechanics</topic><topic>Chickens</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Cross correlation</topic><topic>digital volume correlation</topic><topic>Displacement</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>optical coherence elastography</topic><topic>Optical Coherence Tomography</topic><topic>Polynomials</topic><topic>Poultry</topic><topic>Rigid structures</topic><topic>Rigid-body dynamics</topic><topic>Search algorithms</topic><topic>Soft tissues</topic><topic>Tensors</topic><topic>Theoretical analysis</topic><topic>Three dimensional bodies</topic><topic>Three dimensional motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Fanchao</creatorcontrib><creatorcontrib>Chen, Cheng</creatorcontrib><creatorcontrib>Hui, Shun</creatorcontrib><creatorcontrib>Wang, Jingbo</creatorcontrib><creatorcontrib>Feng, Yvlong</creatorcontrib><creatorcontrib>Sun, Cuiru</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biophotonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Fanchao</au><au>Chen, Cheng</au><au>Hui, Shun</au><au>Wang, Jingbo</au><au>Feng, Yvlong</au><au>Sun, Cuiru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three‐dimensional static optical coherence elastography based on inverse compositional Gauss‐Newton digital volume correlation</atitle><jtitle>Journal of biophotonics</jtitle><addtitle>J Biophotonics</addtitle><date>2019-09</date><risdate>2019</risdate><volume>12</volume><issue>9</issue><spage>e201800422</spage><epage>n/a</epage><pages>e201800422-n/a</pages><issn>1864-063X</issn><eissn>1864-0648</eissn><abstract>The three‐dimensional (3D) mechanical properties characterization of tissue is essential for physiological and pathological studies, as biological tissue is mostly heterogeneous and anisotropic. A digital volume correlation (DVC)‐based 3D optical coherence elastography (OCE) method is developed to measure the 3D displacement and strain tensors. The DVC algorithm includes a zero‐mean normalized cross‐correlation criterion‐based coarse search regime, an inverse compositional Gauss‐Newton fine search algorithm and a local ternary quadratic polynomial fitting strain calculation method. A 3D optical coherence tomography (OCT) scanning protocol is proposed through theoretical analysis and experimental verification. Measurement errors of the DVC‐based 3D OCE method are evaluated to be less than 2.0 μm for displacements and 0.30% for strains by rigid body motion experiments. The 3D displacements and strains of a phantom and a specimen of chicken breast tissue under compression are measured. Results of the phantom show a good agreement with theoretical analysis and tensile testing. The strains of the chicken breast tissue indicate anisotropic biomechanical properties. This study provides an effective method for 3D biomechanical property studies of soft tissue and improves the development of 3D OCE techniques. A three‐dimensional (3D) optical coherence elastography (OCE) technique is developed by integrating a specific coarse‐fine search digital volume correlation (DVC) algorithm and an optical coherence tomography (OCT) imaging. A guidance for choosing the optimal number of OCT line scans is proposed by theoretical analysis and experimental verification. This DVC‐based OCE method has the potential for high accurate 3D displacement and strain tensor measurement of heterogeneous and anisotropic biological tissue.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>31008547</pmid><doi>10.1002/jbio.201800422</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1827-116X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-063X
ispartof Journal of biophotonics, 2019-09, Vol.12 (9), p.e201800422-n/a
issn 1864-063X
1864-0648
language eng
recordid cdi_proquest_miscellaneous_2212719981
source Wiley Online Library All Journals
subjects 3D full‐field displacement
3D full‐field strain
Algorithms
Animal tissues
Anisotropy
Biomechanics
Chickens
Compression
Compression tests
Cross correlation
digital volume correlation
Displacement
Mathematical analysis
Mechanical properties
optical coherence elastography
Optical Coherence Tomography
Polynomials
Poultry
Rigid structures
Rigid-body dynamics
Search algorithms
Soft tissues
Tensors
Theoretical analysis
Three dimensional bodies
Three dimensional motion
title Three‐dimensional static optical coherence elastography based on inverse compositional Gauss‐Newton digital volume correlation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%E2%80%90dimensional%20static%20optical%20coherence%20elastography%20based%20on%20inverse%20compositional%20Gauss%E2%80%90Newton%20digital%20volume%20correlation&rft.jtitle=Journal%20of%20biophotonics&rft.au=Meng,%20Fanchao&rft.date=2019-09&rft.volume=12&rft.issue=9&rft.spage=e201800422&rft.epage=n/a&rft.pages=e201800422-n/a&rft.issn=1864-063X&rft.eissn=1864-0648&rft_id=info:doi/10.1002/jbio.201800422&rft_dat=%3Cproquest_cross%3E2283193185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283193185&rft_id=info:pmid/31008547&rfr_iscdi=true