Three‐dimensional static optical coherence elastography based on inverse compositional Gauss‐Newton digital volume correlation
The three‐dimensional (3D) mechanical properties characterization of tissue is essential for physiological and pathological studies, as biological tissue is mostly heterogeneous and anisotropic. A digital volume correlation (DVC)‐based 3D optical coherence elastography (OCE) method is developed to m...
Gespeichert in:
Veröffentlicht in: | Journal of biophotonics 2019-09, Vol.12 (9), p.e201800422-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | e201800422 |
container_title | Journal of biophotonics |
container_volume | 12 |
creator | Meng, Fanchao Chen, Cheng Hui, Shun Wang, Jingbo Feng, Yvlong Sun, Cuiru |
description | The three‐dimensional (3D) mechanical properties characterization of tissue is essential for physiological and pathological studies, as biological tissue is mostly heterogeneous and anisotropic. A digital volume correlation (DVC)‐based 3D optical coherence elastography (OCE) method is developed to measure the 3D displacement and strain tensors. The DVC algorithm includes a zero‐mean normalized cross‐correlation criterion‐based coarse search regime, an inverse compositional Gauss‐Newton fine search algorithm and a local ternary quadratic polynomial fitting strain calculation method. A 3D optical coherence tomography (OCT) scanning protocol is proposed through theoretical analysis and experimental verification. Measurement errors of the DVC‐based 3D OCE method are evaluated to be less than 2.0 μm for displacements and 0.30% for strains by rigid body motion experiments. The 3D displacements and strains of a phantom and a specimen of chicken breast tissue under compression are measured. Results of the phantom show a good agreement with theoretical analysis and tensile testing. The strains of the chicken breast tissue indicate anisotropic biomechanical properties. This study provides an effective method for 3D biomechanical property studies of soft tissue and improves the development of 3D OCE techniques.
A three‐dimensional (3D) optical coherence elastography (OCE) technique is developed by integrating a specific coarse‐fine search digital volume correlation (DVC) algorithm and an optical coherence tomography (OCT) imaging. A guidance for choosing the optimal number of OCT line scans is proposed by theoretical analysis and experimental verification. This DVC‐based OCE method has the potential for high accurate 3D displacement and strain tensor measurement of heterogeneous and anisotropic biological tissue. |
doi_str_mv | 10.1002/jbio.201800422 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2212719981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2283193185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3732-f80b7df5932124aef3d05409cdf15fa8d88ae019479801c37a3561aade8ed4e83</originalsourceid><addsrcrecordid>eNqFkUFLwzAYhoMoTqdXj1Lw4qUzado1PerQORnuMsFbSZuvW0bb1KTd2E38Bf5Gf4kpnRO8eMmXhOd94ONF6ILgAcHYu1klUg08TBjGvucdoBPChr6Lhz473N_paw-dGrPCeIhpQI9Rj9osC_zwBH3Mlxrg6_1TyAJKI1XJc8fUvJapoyp72meqlqChTMGBnJtaLTSvllsn4QaEo0pHlmvQBixXVMrIupOMeWOMFT_DpraQkAtZ2--1ypuiZbW2tpY9Q0cZzw2c72YfvTzcz0eP7nQ2noxup25KQ-q5GcNJKLIgoh7xfA4ZFTjwcZSKjAQZZ4IxDphEfhgxTGyG02BIOBfAQPjAaB9dd95Kq7cGTB0X0qSQ57wE1ZjYs96QRBEjFr36g65Uo-1WLcUoiShhgaUGHZVqZYyGLK60LLjexgTHbTtx2068b8cGLnfaJilA7PGfOiwQdcBG5rD9Rxc_3U1mv_Jv2GmgsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283193185</pqid></control><display><type>article</type><title>Three‐dimensional static optical coherence elastography based on inverse compositional Gauss‐Newton digital volume correlation</title><source>Wiley Online Library All Journals</source><creator>Meng, Fanchao ; Chen, Cheng ; Hui, Shun ; Wang, Jingbo ; Feng, Yvlong ; Sun, Cuiru</creator><creatorcontrib>Meng, Fanchao ; Chen, Cheng ; Hui, Shun ; Wang, Jingbo ; Feng, Yvlong ; Sun, Cuiru</creatorcontrib><description>The three‐dimensional (3D) mechanical properties characterization of tissue is essential for physiological and pathological studies, as biological tissue is mostly heterogeneous and anisotropic. A digital volume correlation (DVC)‐based 3D optical coherence elastography (OCE) method is developed to measure the 3D displacement and strain tensors. The DVC algorithm includes a zero‐mean normalized cross‐correlation criterion‐based coarse search regime, an inverse compositional Gauss‐Newton fine search algorithm and a local ternary quadratic polynomial fitting strain calculation method. A 3D optical coherence tomography (OCT) scanning protocol is proposed through theoretical analysis and experimental verification. Measurement errors of the DVC‐based 3D OCE method are evaluated to be less than 2.0 μm for displacements and 0.30% for strains by rigid body motion experiments. The 3D displacements and strains of a phantom and a specimen of chicken breast tissue under compression are measured. Results of the phantom show a good agreement with theoretical analysis and tensile testing. The strains of the chicken breast tissue indicate anisotropic biomechanical properties. This study provides an effective method for 3D biomechanical property studies of soft tissue and improves the development of 3D OCE techniques.
A three‐dimensional (3D) optical coherence elastography (OCE) technique is developed by integrating a specific coarse‐fine search digital volume correlation (DVC) algorithm and an optical coherence tomography (OCT) imaging. A guidance for choosing the optimal number of OCT line scans is proposed by theoretical analysis and experimental verification. This DVC‐based OCE method has the potential for high accurate 3D displacement and strain tensor measurement of heterogeneous and anisotropic biological tissue.</description><identifier>ISSN: 1864-063X</identifier><identifier>EISSN: 1864-0648</identifier><identifier>DOI: 10.1002/jbio.201800422</identifier><identifier>PMID: 31008547</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH & Co. KGaA</publisher><subject>3D full‐field displacement ; 3D full‐field strain ; Algorithms ; Animal tissues ; Anisotropy ; Biomechanics ; Chickens ; Compression ; Compression tests ; Cross correlation ; digital volume correlation ; Displacement ; Mathematical analysis ; Mechanical properties ; optical coherence elastography ; Optical Coherence Tomography ; Polynomials ; Poultry ; Rigid structures ; Rigid-body dynamics ; Search algorithms ; Soft tissues ; Tensors ; Theoretical analysis ; Three dimensional bodies ; Three dimensional motion</subject><ispartof>Journal of biophotonics, 2019-09, Vol.12 (9), p.e201800422-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3732-f80b7df5932124aef3d05409cdf15fa8d88ae019479801c37a3561aade8ed4e83</citedby><cites>FETCH-LOGICAL-c3732-f80b7df5932124aef3d05409cdf15fa8d88ae019479801c37a3561aade8ed4e83</cites><orcidid>0000-0003-1827-116X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbio.201800422$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbio.201800422$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31008547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Fanchao</creatorcontrib><creatorcontrib>Chen, Cheng</creatorcontrib><creatorcontrib>Hui, Shun</creatorcontrib><creatorcontrib>Wang, Jingbo</creatorcontrib><creatorcontrib>Feng, Yvlong</creatorcontrib><creatorcontrib>Sun, Cuiru</creatorcontrib><title>Three‐dimensional static optical coherence elastography based on inverse compositional Gauss‐Newton digital volume correlation</title><title>Journal of biophotonics</title><addtitle>J Biophotonics</addtitle><description>The three‐dimensional (3D) mechanical properties characterization of tissue is essential for physiological and pathological studies, as biological tissue is mostly heterogeneous and anisotropic. A digital volume correlation (DVC)‐based 3D optical coherence elastography (OCE) method is developed to measure the 3D displacement and strain tensors. The DVC algorithm includes a zero‐mean normalized cross‐correlation criterion‐based coarse search regime, an inverse compositional Gauss‐Newton fine search algorithm and a local ternary quadratic polynomial fitting strain calculation method. A 3D optical coherence tomography (OCT) scanning protocol is proposed through theoretical analysis and experimental verification. Measurement errors of the DVC‐based 3D OCE method are evaluated to be less than 2.0 μm for displacements and 0.30% for strains by rigid body motion experiments. The 3D displacements and strains of a phantom and a specimen of chicken breast tissue under compression are measured. Results of the phantom show a good agreement with theoretical analysis and tensile testing. The strains of the chicken breast tissue indicate anisotropic biomechanical properties. This study provides an effective method for 3D biomechanical property studies of soft tissue and improves the development of 3D OCE techniques.
A three‐dimensional (3D) optical coherence elastography (OCE) technique is developed by integrating a specific coarse‐fine search digital volume correlation (DVC) algorithm and an optical coherence tomography (OCT) imaging. A guidance for choosing the optimal number of OCT line scans is proposed by theoretical analysis and experimental verification. This DVC‐based OCE method has the potential for high accurate 3D displacement and strain tensor measurement of heterogeneous and anisotropic biological tissue.</description><subject>3D full‐field displacement</subject><subject>3D full‐field strain</subject><subject>Algorithms</subject><subject>Animal tissues</subject><subject>Anisotropy</subject><subject>Biomechanics</subject><subject>Chickens</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Cross correlation</subject><subject>digital volume correlation</subject><subject>Displacement</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>optical coherence elastography</subject><subject>Optical Coherence Tomography</subject><subject>Polynomials</subject><subject>Poultry</subject><subject>Rigid structures</subject><subject>Rigid-body dynamics</subject><subject>Search algorithms</subject><subject>Soft tissues</subject><subject>Tensors</subject><subject>Theoretical analysis</subject><subject>Three dimensional bodies</subject><subject>Three dimensional motion</subject><issn>1864-063X</issn><issn>1864-0648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkUFLwzAYhoMoTqdXj1Lw4qUzado1PerQORnuMsFbSZuvW0bb1KTd2E38Bf5Gf4kpnRO8eMmXhOd94ONF6ILgAcHYu1klUg08TBjGvucdoBPChr6Lhz473N_paw-dGrPCeIhpQI9Rj9osC_zwBH3Mlxrg6_1TyAJKI1XJc8fUvJapoyp72meqlqChTMGBnJtaLTSvllsn4QaEo0pHlmvQBixXVMrIupOMeWOMFT_DpraQkAtZ2--1ypuiZbW2tpY9Q0cZzw2c72YfvTzcz0eP7nQ2noxup25KQ-q5GcNJKLIgoh7xfA4ZFTjwcZSKjAQZZ4IxDphEfhgxTGyG02BIOBfAQPjAaB9dd95Kq7cGTB0X0qSQ57wE1ZjYs96QRBEjFr36g65Uo-1WLcUoiShhgaUGHZVqZYyGLK60LLjexgTHbTtx2068b8cGLnfaJilA7PGfOiwQdcBG5rD9Rxc_3U1mv_Jv2GmgsA</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Meng, Fanchao</creator><creator>Chen, Cheng</creator><creator>Hui, Shun</creator><creator>Wang, Jingbo</creator><creator>Feng, Yvlong</creator><creator>Sun, Cuiru</creator><general>WILEY‐VCH Verlag GmbH & Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1827-116X</orcidid></search><sort><creationdate>201909</creationdate><title>Three‐dimensional static optical coherence elastography based on inverse compositional Gauss‐Newton digital volume correlation</title><author>Meng, Fanchao ; Chen, Cheng ; Hui, Shun ; Wang, Jingbo ; Feng, Yvlong ; Sun, Cuiru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3732-f80b7df5932124aef3d05409cdf15fa8d88ae019479801c37a3561aade8ed4e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D full‐field displacement</topic><topic>3D full‐field strain</topic><topic>Algorithms</topic><topic>Animal tissues</topic><topic>Anisotropy</topic><topic>Biomechanics</topic><topic>Chickens</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Cross correlation</topic><topic>digital volume correlation</topic><topic>Displacement</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>optical coherence elastography</topic><topic>Optical Coherence Tomography</topic><topic>Polynomials</topic><topic>Poultry</topic><topic>Rigid structures</topic><topic>Rigid-body dynamics</topic><topic>Search algorithms</topic><topic>Soft tissues</topic><topic>Tensors</topic><topic>Theoretical analysis</topic><topic>Three dimensional bodies</topic><topic>Three dimensional motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Fanchao</creatorcontrib><creatorcontrib>Chen, Cheng</creatorcontrib><creatorcontrib>Hui, Shun</creatorcontrib><creatorcontrib>Wang, Jingbo</creatorcontrib><creatorcontrib>Feng, Yvlong</creatorcontrib><creatorcontrib>Sun, Cuiru</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biophotonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Fanchao</au><au>Chen, Cheng</au><au>Hui, Shun</au><au>Wang, Jingbo</au><au>Feng, Yvlong</au><au>Sun, Cuiru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three‐dimensional static optical coherence elastography based on inverse compositional Gauss‐Newton digital volume correlation</atitle><jtitle>Journal of biophotonics</jtitle><addtitle>J Biophotonics</addtitle><date>2019-09</date><risdate>2019</risdate><volume>12</volume><issue>9</issue><spage>e201800422</spage><epage>n/a</epage><pages>e201800422-n/a</pages><issn>1864-063X</issn><eissn>1864-0648</eissn><abstract>The three‐dimensional (3D) mechanical properties characterization of tissue is essential for physiological and pathological studies, as biological tissue is mostly heterogeneous and anisotropic. A digital volume correlation (DVC)‐based 3D optical coherence elastography (OCE) method is developed to measure the 3D displacement and strain tensors. The DVC algorithm includes a zero‐mean normalized cross‐correlation criterion‐based coarse search regime, an inverse compositional Gauss‐Newton fine search algorithm and a local ternary quadratic polynomial fitting strain calculation method. A 3D optical coherence tomography (OCT) scanning protocol is proposed through theoretical analysis and experimental verification. Measurement errors of the DVC‐based 3D OCE method are evaluated to be less than 2.0 μm for displacements and 0.30% for strains by rigid body motion experiments. The 3D displacements and strains of a phantom and a specimen of chicken breast tissue under compression are measured. Results of the phantom show a good agreement with theoretical analysis and tensile testing. The strains of the chicken breast tissue indicate anisotropic biomechanical properties. This study provides an effective method for 3D biomechanical property studies of soft tissue and improves the development of 3D OCE techniques.
A three‐dimensional (3D) optical coherence elastography (OCE) technique is developed by integrating a specific coarse‐fine search digital volume correlation (DVC) algorithm and an optical coherence tomography (OCT) imaging. A guidance for choosing the optimal number of OCT line scans is proposed by theoretical analysis and experimental verification. This DVC‐based OCE method has the potential for high accurate 3D displacement and strain tensor measurement of heterogeneous and anisotropic biological tissue.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH & Co. KGaA</pub><pmid>31008547</pmid><doi>10.1002/jbio.201800422</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1827-116X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-063X |
ispartof | Journal of biophotonics, 2019-09, Vol.12 (9), p.e201800422-n/a |
issn | 1864-063X 1864-0648 |
language | eng |
recordid | cdi_proquest_miscellaneous_2212719981 |
source | Wiley Online Library All Journals |
subjects | 3D full‐field displacement 3D full‐field strain Algorithms Animal tissues Anisotropy Biomechanics Chickens Compression Compression tests Cross correlation digital volume correlation Displacement Mathematical analysis Mechanical properties optical coherence elastography Optical Coherence Tomography Polynomials Poultry Rigid structures Rigid-body dynamics Search algorithms Soft tissues Tensors Theoretical analysis Three dimensional bodies Three dimensional motion |
title | Three‐dimensional static optical coherence elastography based on inverse compositional Gauss‐Newton digital volume correlation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%E2%80%90dimensional%20static%20optical%20coherence%20elastography%20based%20on%20inverse%20compositional%20Gauss%E2%80%90Newton%20digital%20volume%20correlation&rft.jtitle=Journal%20of%20biophotonics&rft.au=Meng,%20Fanchao&rft.date=2019-09&rft.volume=12&rft.issue=9&rft.spage=e201800422&rft.epage=n/a&rft.pages=e201800422-n/a&rft.issn=1864-063X&rft.eissn=1864-0648&rft_id=info:doi/10.1002/jbio.201800422&rft_dat=%3Cproquest_cross%3E2283193185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283193185&rft_id=info:pmid/31008547&rfr_iscdi=true |