Improving the Numerical Stability of the NAST Force Field for RNA Simulations
The NAST force field is a popular tool for modeling RNA and is typical of low-resolution approaches. Unfortunately, some combinations of bond and dihedral angles can reach cliffs on the energy landscape which lead to numerical disasters. We describe changes to the formulation (NAST improved, NASTI)...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2019-05, Vol.15 (5), p.3402-3409 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3409 |
---|---|
container_issue | 5 |
container_start_page | 3402 |
container_title | Journal of chemical theory and computation |
container_volume | 15 |
creator | Petersen, Nils P Ort, Thomas Torda, Andrew E |
description | The NAST force field is a popular tool for modeling RNA and is typical of low-resolution approaches. Unfortunately, some combinations of bond and dihedral angles can reach cliffs on the energy landscape which lead to numerical disasters. We describe changes to the formulation (NAST improved, NASTI) which smooth the dihedral energy term when neighboring angles become flat. We also improved the fit to experimental structures by replacing the harmonic term for the backbone angles with spline functions and using a more sophisticated approach to calculate energies for fragments that span both helix and loop regions. A newer, larger set of structures was used for the parametrization. The new formulation can be run for millions of steps without a thermostat, whereas NAST routinely suffers numerical catastrophes. Simulations with NASTI showed no decrease in the quality of the structures as reflected by slightly better GDT-TS scores and, in three of the five cases, marginally better RMSD values when compared to the crystal structures. |
doi_str_mv | 10.1021/acs.jctc.9b00089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2211951980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211951980</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-efdd010eefcda7cafdccf12382ddb363399c9e2e942274009a2a262ab1f8bebe3</originalsourceid><addsrcrecordid>eNp1kMFPwjAUhxujEUTvnkwTLx4EX9ttrEdCREkQE8Hz0nWvWrIxbDcT_nuHAw4mnvqSfr_fe_kIuWYwYMDZg9J-sNKVHsgUAGJ5QrosDGRfRjw6Pc4s7pAL71cAQgRcnJOOYAA8hKhLXqbFxpXfdv1Bq0-k87pAZ7XK6aJSqc1ttaWlab9GiyWdlE4jnVjMM2pKR9_mI7qwRZ2rypZrf0nOjMo9Xu3fHnmfPC7Hz_3Z69N0PJr1lWDDqo8my4ABotGZGmplMq0N4yLmWZaKSAgptUSOMuB8GABIxRWPuEqZiVNMUfTIXdvb3P5Vo6-SwnqNea7WWNY-4ZwxGTIZQ4Pe_kFXZe3WzXUNFYggGIahaChoKe1K7x2aZONsodw2YZDsVCeN6mSnOtmrbiI3--I6LTA7Bg5uG-C-BX6jh6X_9v0AOVaJgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243447553</pqid></control><display><type>article</type><title>Improving the Numerical Stability of the NAST Force Field for RNA Simulations</title><source>ACS Publications</source><creator>Petersen, Nils P ; Ort, Thomas ; Torda, Andrew E</creator><creatorcontrib>Petersen, Nils P ; Ort, Thomas ; Torda, Andrew E</creatorcontrib><description>The NAST force field is a popular tool for modeling RNA and is typical of low-resolution approaches. Unfortunately, some combinations of bond and dihedral angles can reach cliffs on the energy landscape which lead to numerical disasters. We describe changes to the formulation (NAST improved, NASTI) which smooth the dihedral energy term when neighboring angles become flat. We also improved the fit to experimental structures by replacing the harmonic term for the backbone angles with spline functions and using a more sophisticated approach to calculate energies for fragments that span both helix and loop regions. A newer, larger set of structures was used for the parametrization. The new formulation can be run for millions of steps without a thermostat, whereas NAST routinely suffers numerical catastrophes. Simulations with NASTI showed no decrease in the quality of the structures as reflected by slightly better GDT-TS scores and, in three of the five cases, marginally better RMSD values when compared to the crystal structures.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.9b00089</identifier><identifier>PMID: 31002506</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cliffs ; Computer simulation ; Crystal structure ; Disasters ; Numerical stability ; Parameterization ; Spline functions</subject><ispartof>Journal of chemical theory and computation, 2019-05, Vol.15 (5), p.3402-3409</ispartof><rights>Copyright American Chemical Society May 14, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a317t-efdd010eefcda7cafdccf12382ddb363399c9e2e942274009a2a262ab1f8bebe3</cites><orcidid>0000-0002-0557-3567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.9b00089$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.9b00089$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31002506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petersen, Nils P</creatorcontrib><creatorcontrib>Ort, Thomas</creatorcontrib><creatorcontrib>Torda, Andrew E</creatorcontrib><title>Improving the Numerical Stability of the NAST Force Field for RNA Simulations</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>The NAST force field is a popular tool for modeling RNA and is typical of low-resolution approaches. Unfortunately, some combinations of bond and dihedral angles can reach cliffs on the energy landscape which lead to numerical disasters. We describe changes to the formulation (NAST improved, NASTI) which smooth the dihedral energy term when neighboring angles become flat. We also improved the fit to experimental structures by replacing the harmonic term for the backbone angles with spline functions and using a more sophisticated approach to calculate energies for fragments that span both helix and loop regions. A newer, larger set of structures was used for the parametrization. The new formulation can be run for millions of steps without a thermostat, whereas NAST routinely suffers numerical catastrophes. Simulations with NASTI showed no decrease in the quality of the structures as reflected by slightly better GDT-TS scores and, in three of the five cases, marginally better RMSD values when compared to the crystal structures.</description><subject>Cliffs</subject><subject>Computer simulation</subject><subject>Crystal structure</subject><subject>Disasters</subject><subject>Numerical stability</subject><subject>Parameterization</subject><subject>Spline functions</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFPwjAUhxujEUTvnkwTLx4EX9ttrEdCREkQE8Hz0nWvWrIxbDcT_nuHAw4mnvqSfr_fe_kIuWYwYMDZg9J-sNKVHsgUAGJ5QrosDGRfRjw6Pc4s7pAL71cAQgRcnJOOYAA8hKhLXqbFxpXfdv1Bq0-k87pAZ7XK6aJSqc1ttaWlab9GiyWdlE4jnVjMM2pKR9_mI7qwRZ2rypZrf0nOjMo9Xu3fHnmfPC7Hz_3Z69N0PJr1lWDDqo8my4ABotGZGmplMq0N4yLmWZaKSAgptUSOMuB8GABIxRWPuEqZiVNMUfTIXdvb3P5Vo6-SwnqNea7WWNY-4ZwxGTIZQ4Pe_kFXZe3WzXUNFYggGIahaChoKe1K7x2aZONsodw2YZDsVCeN6mSnOtmrbiI3--I6LTA7Bg5uG-C-BX6jh6X_9v0AOVaJgg</recordid><startdate>20190514</startdate><enddate>20190514</enddate><creator>Petersen, Nils P</creator><creator>Ort, Thomas</creator><creator>Torda, Andrew E</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0557-3567</orcidid></search><sort><creationdate>20190514</creationdate><title>Improving the Numerical Stability of the NAST Force Field for RNA Simulations</title><author>Petersen, Nils P ; Ort, Thomas ; Torda, Andrew E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-efdd010eefcda7cafdccf12382ddb363399c9e2e942274009a2a262ab1f8bebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cliffs</topic><topic>Computer simulation</topic><topic>Crystal structure</topic><topic>Disasters</topic><topic>Numerical stability</topic><topic>Parameterization</topic><topic>Spline functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petersen, Nils P</creatorcontrib><creatorcontrib>Ort, Thomas</creatorcontrib><creatorcontrib>Torda, Andrew E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petersen, Nils P</au><au>Ort, Thomas</au><au>Torda, Andrew E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the Numerical Stability of the NAST Force Field for RNA Simulations</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2019-05-14</date><risdate>2019</risdate><volume>15</volume><issue>5</issue><spage>3402</spage><epage>3409</epage><pages>3402-3409</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>The NAST force field is a popular tool for modeling RNA and is typical of low-resolution approaches. Unfortunately, some combinations of bond and dihedral angles can reach cliffs on the energy landscape which lead to numerical disasters. We describe changes to the formulation (NAST improved, NASTI) which smooth the dihedral energy term when neighboring angles become flat. We also improved the fit to experimental structures by replacing the harmonic term for the backbone angles with spline functions and using a more sophisticated approach to calculate energies for fragments that span both helix and loop regions. A newer, larger set of structures was used for the parametrization. The new formulation can be run for millions of steps without a thermostat, whereas NAST routinely suffers numerical catastrophes. Simulations with NASTI showed no decrease in the quality of the structures as reflected by slightly better GDT-TS scores and, in three of the five cases, marginally better RMSD values when compared to the crystal structures.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31002506</pmid><doi>10.1021/acs.jctc.9b00089</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0557-3567</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2019-05, Vol.15 (5), p.3402-3409 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_2211951980 |
source | ACS Publications |
subjects | Cliffs Computer simulation Crystal structure Disasters Numerical stability Parameterization Spline functions |
title | Improving the Numerical Stability of the NAST Force Field for RNA Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A28%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Numerical%20Stability%20of%20the%20NAST%20Force%20Field%20for%20RNA%20Simulations&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Petersen,%20Nils%20P&rft.date=2019-05-14&rft.volume=15&rft.issue=5&rft.spage=3402&rft.epage=3409&rft.pages=3402-3409&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.9b00089&rft_dat=%3Cproquest_cross%3E2211951980%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243447553&rft_id=info:pmid/31002506&rfr_iscdi=true |