Improving the Numerical Stability of the NAST Force Field for RNA Simulations

The NAST force field is a popular tool for modeling RNA and is typical of low-resolution approaches. Unfortunately, some combinations of bond and dihedral angles can reach cliffs on the energy landscape which lead to numerical disasters. We describe changes to the formulation (NAST improved, NASTI)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2019-05, Vol.15 (5), p.3402-3409
Hauptverfasser: Petersen, Nils P, Ort, Thomas, Torda, Andrew E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3409
container_issue 5
container_start_page 3402
container_title Journal of chemical theory and computation
container_volume 15
creator Petersen, Nils P
Ort, Thomas
Torda, Andrew E
description The NAST force field is a popular tool for modeling RNA and is typical of low-resolution approaches. Unfortunately, some combinations of bond and dihedral angles can reach cliffs on the energy landscape which lead to numerical disasters. We describe changes to the formulation (NAST improved, NASTI) which smooth the dihedral energy term when neighboring angles become flat. We also improved the fit to experimental structures by replacing the harmonic term for the backbone angles with spline functions and using a more sophisticated approach to calculate energies for fragments that span both helix and loop regions. A newer, larger set of structures was used for the parametrization. The new formulation can be run for millions of steps without a thermostat, whereas NAST routinely suffers numerical catastrophes. Simulations with NASTI showed no decrease in the quality of the structures as reflected by slightly better GDT-TS scores and, in three of the five cases, marginally better RMSD values when compared to the crystal structures.
doi_str_mv 10.1021/acs.jctc.9b00089
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2211951980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211951980</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-efdd010eefcda7cafdccf12382ddb363399c9e2e942274009a2a262ab1f8bebe3</originalsourceid><addsrcrecordid>eNp1kMFPwjAUhxujEUTvnkwTLx4EX9ttrEdCREkQE8Hz0nWvWrIxbDcT_nuHAw4mnvqSfr_fe_kIuWYwYMDZg9J-sNKVHsgUAGJ5QrosDGRfRjw6Pc4s7pAL71cAQgRcnJOOYAA8hKhLXqbFxpXfdv1Bq0-k87pAZ7XK6aJSqc1ttaWlab9GiyWdlE4jnVjMM2pKR9_mI7qwRZ2rypZrf0nOjMo9Xu3fHnmfPC7Hz_3Z69N0PJr1lWDDqo8my4ABotGZGmplMq0N4yLmWZaKSAgptUSOMuB8GABIxRWPuEqZiVNMUfTIXdvb3P5Vo6-SwnqNea7WWNY-4ZwxGTIZQ4Pe_kFXZe3WzXUNFYggGIahaChoKe1K7x2aZONsodw2YZDsVCeN6mSnOtmrbiI3--I6LTA7Bg5uG-C-BX6jh6X_9v0AOVaJgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243447553</pqid></control><display><type>article</type><title>Improving the Numerical Stability of the NAST Force Field for RNA Simulations</title><source>ACS Publications</source><creator>Petersen, Nils P ; Ort, Thomas ; Torda, Andrew E</creator><creatorcontrib>Petersen, Nils P ; Ort, Thomas ; Torda, Andrew E</creatorcontrib><description>The NAST force field is a popular tool for modeling RNA and is typical of low-resolution approaches. Unfortunately, some combinations of bond and dihedral angles can reach cliffs on the energy landscape which lead to numerical disasters. We describe changes to the formulation (NAST improved, NASTI) which smooth the dihedral energy term when neighboring angles become flat. We also improved the fit to experimental structures by replacing the harmonic term for the backbone angles with spline functions and using a more sophisticated approach to calculate energies for fragments that span both helix and loop regions. A newer, larger set of structures was used for the parametrization. The new formulation can be run for millions of steps without a thermostat, whereas NAST routinely suffers numerical catastrophes. Simulations with NASTI showed no decrease in the quality of the structures as reflected by slightly better GDT-TS scores and, in three of the five cases, marginally better RMSD values when compared to the crystal structures.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.9b00089</identifier><identifier>PMID: 31002506</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cliffs ; Computer simulation ; Crystal structure ; Disasters ; Numerical stability ; Parameterization ; Spline functions</subject><ispartof>Journal of chemical theory and computation, 2019-05, Vol.15 (5), p.3402-3409</ispartof><rights>Copyright American Chemical Society May 14, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a317t-efdd010eefcda7cafdccf12382ddb363399c9e2e942274009a2a262ab1f8bebe3</cites><orcidid>0000-0002-0557-3567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.9b00089$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.9b00089$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31002506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petersen, Nils P</creatorcontrib><creatorcontrib>Ort, Thomas</creatorcontrib><creatorcontrib>Torda, Andrew E</creatorcontrib><title>Improving the Numerical Stability of the NAST Force Field for RNA Simulations</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>The NAST force field is a popular tool for modeling RNA and is typical of low-resolution approaches. Unfortunately, some combinations of bond and dihedral angles can reach cliffs on the energy landscape which lead to numerical disasters. We describe changes to the formulation (NAST improved, NASTI) which smooth the dihedral energy term when neighboring angles become flat. We also improved the fit to experimental structures by replacing the harmonic term for the backbone angles with spline functions and using a more sophisticated approach to calculate energies for fragments that span both helix and loop regions. A newer, larger set of structures was used for the parametrization. The new formulation can be run for millions of steps without a thermostat, whereas NAST routinely suffers numerical catastrophes. Simulations with NASTI showed no decrease in the quality of the structures as reflected by slightly better GDT-TS scores and, in three of the five cases, marginally better RMSD values when compared to the crystal structures.</description><subject>Cliffs</subject><subject>Computer simulation</subject><subject>Crystal structure</subject><subject>Disasters</subject><subject>Numerical stability</subject><subject>Parameterization</subject><subject>Spline functions</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFPwjAUhxujEUTvnkwTLx4EX9ttrEdCREkQE8Hz0nWvWrIxbDcT_nuHAw4mnvqSfr_fe_kIuWYwYMDZg9J-sNKVHsgUAGJ5QrosDGRfRjw6Pc4s7pAL71cAQgRcnJOOYAA8hKhLXqbFxpXfdv1Bq0-k87pAZ7XK6aJSqc1ttaWlab9GiyWdlE4jnVjMM2pKR9_mI7qwRZ2rypZrf0nOjMo9Xu3fHnmfPC7Hz_3Z69N0PJr1lWDDqo8my4ABotGZGmplMq0N4yLmWZaKSAgptUSOMuB8GABIxRWPuEqZiVNMUfTIXdvb3P5Vo6-SwnqNea7WWNY-4ZwxGTIZQ4Pe_kFXZe3WzXUNFYggGIahaChoKe1K7x2aZONsodw2YZDsVCeN6mSnOtmrbiI3--I6LTA7Bg5uG-C-BX6jh6X_9v0AOVaJgg</recordid><startdate>20190514</startdate><enddate>20190514</enddate><creator>Petersen, Nils P</creator><creator>Ort, Thomas</creator><creator>Torda, Andrew E</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0557-3567</orcidid></search><sort><creationdate>20190514</creationdate><title>Improving the Numerical Stability of the NAST Force Field for RNA Simulations</title><author>Petersen, Nils P ; Ort, Thomas ; Torda, Andrew E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-efdd010eefcda7cafdccf12382ddb363399c9e2e942274009a2a262ab1f8bebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cliffs</topic><topic>Computer simulation</topic><topic>Crystal structure</topic><topic>Disasters</topic><topic>Numerical stability</topic><topic>Parameterization</topic><topic>Spline functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petersen, Nils P</creatorcontrib><creatorcontrib>Ort, Thomas</creatorcontrib><creatorcontrib>Torda, Andrew E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petersen, Nils P</au><au>Ort, Thomas</au><au>Torda, Andrew E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the Numerical Stability of the NAST Force Field for RNA Simulations</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2019-05-14</date><risdate>2019</risdate><volume>15</volume><issue>5</issue><spage>3402</spage><epage>3409</epage><pages>3402-3409</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>The NAST force field is a popular tool for modeling RNA and is typical of low-resolution approaches. Unfortunately, some combinations of bond and dihedral angles can reach cliffs on the energy landscape which lead to numerical disasters. We describe changes to the formulation (NAST improved, NASTI) which smooth the dihedral energy term when neighboring angles become flat. We also improved the fit to experimental structures by replacing the harmonic term for the backbone angles with spline functions and using a more sophisticated approach to calculate energies for fragments that span both helix and loop regions. A newer, larger set of structures was used for the parametrization. The new formulation can be run for millions of steps without a thermostat, whereas NAST routinely suffers numerical catastrophes. Simulations with NASTI showed no decrease in the quality of the structures as reflected by slightly better GDT-TS scores and, in three of the five cases, marginally better RMSD values when compared to the crystal structures.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31002506</pmid><doi>10.1021/acs.jctc.9b00089</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0557-3567</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2019-05, Vol.15 (5), p.3402-3409
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_2211951980
source ACS Publications
subjects Cliffs
Computer simulation
Crystal structure
Disasters
Numerical stability
Parameterization
Spline functions
title Improving the Numerical Stability of the NAST Force Field for RNA Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A28%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Numerical%20Stability%20of%20the%20NAST%20Force%20Field%20for%20RNA%20Simulations&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Petersen,%20Nils%20P&rft.date=2019-05-14&rft.volume=15&rft.issue=5&rft.spage=3402&rft.epage=3409&rft.pages=3402-3409&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.9b00089&rft_dat=%3Cproquest_cross%3E2211951980%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243447553&rft_id=info:pmid/31002506&rfr_iscdi=true