A Direct Method for the Discrete Solution of Separable Elliptic Equations
This paper extends the direct method of cyclic reduction to linear systems which result from the discretization of separable elliptic equations with Dirichlet, Neumann, or periodic boundary conditions. For an m × n net, the operation count is proportional to mn log2 n and mn storage locations are re...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1974-12, Vol.11 (6), p.1136-1150 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1150 |
---|---|
container_issue | 6 |
container_start_page | 1136 |
container_title | SIAM journal on numerical analysis |
container_volume | 11 |
creator | Swarztrauber, Paul N. |
description | This paper extends the direct method of cyclic reduction to linear systems which result from the discretization of separable elliptic equations with Dirichlet, Neumann, or periodic boundary conditions. For an m × n net, the operation count is proportional to mn log2 n and mn storage locations are required. |
doi_str_mv | 10.1137/0711086 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_22113305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2156231</jstor_id><sourcerecordid>2156231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-ec63e6f940567bbcded38557f04a6c955f4b8e019dd277801137463246c8a1ed3</originalsourceid><addsrcrecordid>eNpd0DtPwzAQAGALgUQpiD_AYDHAFPAjfmSsSoBKRQyFOXKci5oqrVPbGfj3uGrFwHTy-fM9jNAtJU-UcvVMFKVEyzM0oaQQmaKKnKMJIVxmNGfFJboKYUPSWVM-QYsZfuk82Ig_IK5dg1vncVxDygbrIQJeuX6Mndth1-IVDMabugdc9n03xM7icj-aw3W4Rhet6QPcnOIUfb-WX_P3bPn5tpjPlpnlUscMrOQg2yInQqq6tg00XAuhWpIbaQsh2rzWQGjRNEwpTQ475ZKzXFptaMJT9HCsO3i3HyHEaptGhb43O3BjqBhLTzgRCd7_gxs3-l2arSoYl1znBUno8YisdyF4aKvBd1vjfypKqkPv6vSfSd4d5SZE5_8Yo0IyTvkvrkxuTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923638490</pqid></control><display><type>article</type><title>A Direct Method for the Discrete Solution of Separable Elliptic Equations</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Swarztrauber, Paul N.</creator><creatorcontrib>Swarztrauber, Paul N.</creatorcontrib><description>This paper extends the direct method of cyclic reduction to linear systems which result from the discretization of separable elliptic equations with Dirichlet, Neumann, or periodic boundary conditions. For an m × n net, the operation count is proportional to mn log2 n and mn storage locations are required.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0711086</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Boundary conditions ; Elliptic equations ; Factorization ; Fourier transforms ; Linear systems ; Matrices ; Methods ; Partial differential equations ; Poisson equation ; Polynomials ; Preprocessing ; Scalars</subject><ispartof>SIAM journal on numerical analysis, 1974-12, Vol.11 (6), p.1136-1150</ispartof><rights>Copyright 1974 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1974 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-ec63e6f940567bbcded38557f04a6c955f4b8e019dd277801137463246c8a1ed3</citedby><cites>FETCH-LOGICAL-c368t-ec63e6f940567bbcded38557f04a6c955f4b8e019dd277801137463246c8a1ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2156231$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2156231$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Swarztrauber, Paul N.</creatorcontrib><title>A Direct Method for the Discrete Solution of Separable Elliptic Equations</title><title>SIAM journal on numerical analysis</title><description>This paper extends the direct method of cyclic reduction to linear systems which result from the discretization of separable elliptic equations with Dirichlet, Neumann, or periodic boundary conditions. For an m × n net, the operation count is proportional to mn log2 n and mn storage locations are required.</description><subject>Algorithms</subject><subject>Boundary conditions</subject><subject>Elliptic equations</subject><subject>Factorization</subject><subject>Fourier transforms</subject><subject>Linear systems</subject><subject>Matrices</subject><subject>Methods</subject><subject>Partial differential equations</subject><subject>Poisson equation</subject><subject>Polynomials</subject><subject>Preprocessing</subject><subject>Scalars</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1974</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0DtPwzAQAGALgUQpiD_AYDHAFPAjfmSsSoBKRQyFOXKci5oqrVPbGfj3uGrFwHTy-fM9jNAtJU-UcvVMFKVEyzM0oaQQmaKKnKMJIVxmNGfFJboKYUPSWVM-QYsZfuk82Ig_IK5dg1vncVxDygbrIQJeuX6Mndth1-IVDMabugdc9n03xM7icj-aw3W4Rhet6QPcnOIUfb-WX_P3bPn5tpjPlpnlUscMrOQg2yInQqq6tg00XAuhWpIbaQsh2rzWQGjRNEwpTQ475ZKzXFptaMJT9HCsO3i3HyHEaptGhb43O3BjqBhLTzgRCd7_gxs3-l2arSoYl1znBUno8YisdyF4aKvBd1vjfypKqkPv6vSfSd4d5SZE5_8Yo0IyTvkvrkxuTg</recordid><startdate>19741201</startdate><enddate>19741201</enddate><creator>Swarztrauber, Paul N.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19741201</creationdate><title>A Direct Method for the Discrete Solution of Separable Elliptic Equations</title><author>Swarztrauber, Paul N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-ec63e6f940567bbcded38557f04a6c955f4b8e019dd277801137463246c8a1ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1974</creationdate><topic>Algorithms</topic><topic>Boundary conditions</topic><topic>Elliptic equations</topic><topic>Factorization</topic><topic>Fourier transforms</topic><topic>Linear systems</topic><topic>Matrices</topic><topic>Methods</topic><topic>Partial differential equations</topic><topic>Poisson equation</topic><topic>Polynomials</topic><topic>Preprocessing</topic><topic>Scalars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swarztrauber, Paul N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swarztrauber, Paul N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Direct Method for the Discrete Solution of Separable Elliptic Equations</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1974-12-01</date><risdate>1974</risdate><volume>11</volume><issue>6</issue><spage>1136</spage><epage>1150</epage><pages>1136-1150</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>This paper extends the direct method of cyclic reduction to linear systems which result from the discretization of separable elliptic equations with Dirichlet, Neumann, or periodic boundary conditions. For an m × n net, the operation count is proportional to mn log2 n and mn storage locations are required.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0711086</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 1974-12, Vol.11 (6), p.1136-1150 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_miscellaneous_22113305 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Algorithms Boundary conditions Elliptic equations Factorization Fourier transforms Linear systems Matrices Methods Partial differential equations Poisson equation Polynomials Preprocessing Scalars |
title | A Direct Method for the Discrete Solution of Separable Elliptic Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A45%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Direct%20Method%20for%20the%20Discrete%20Solution%20of%20Separable%20Elliptic%20Equations&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Swarztrauber,%20Paul%20N.&rft.date=1974-12-01&rft.volume=11&rft.issue=6&rft.spage=1136&rft.epage=1150&rft.pages=1136-1150&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/0711086&rft_dat=%3Cjstor_proqu%3E2156231%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923638490&rft_id=info:pmid/&rft_jstor_id=2156231&rfr_iscdi=true |