Deep MS/MS-Aided Structural-Similarity Scoring for Unknown Metabolite Identification
Tandem mass spectrometry (MS/MS) is the workhorse for structural annotation of metabolites, because it can provide abundance of structural information. Currently, metabolite identification mainly relies on querying experimental spectra against public or in-house spectral databases. The identificatio...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2019-05, Vol.91 (9), p.5629-5637 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5637 |
---|---|
container_issue | 9 |
container_start_page | 5629 |
container_title | Analytical chemistry (Washington) |
container_volume | 91 |
creator | Ji, Hongchao Xu, Yamei Lu, Hongmei Zhang, Zhimin |
description | Tandem mass spectrometry (MS/MS) is the workhorse for structural annotation of metabolites, because it can provide abundance of structural information. Currently, metabolite identification mainly relies on querying experimental spectra against public or in-house spectral databases. The identification is severely limited by the available spectra in the databases. Although, the metabolome consists of a huge number of different functional metabolites, the whole metabolome derives from a limited number of initial metabolites via bioreactions. In each bioreaction, the reactant and the product often change some substructures but are still structurally related. These structurally related metabolites often have related MS/MS spectra, which provide the possibility to identify unknown metabolites through known ones. However, it is challenging to explore the internal relationship between MS/MS spectra and structural similarity. In this study, we present the deep-learning-based approach for MS/MS-aided structural-similarity scoring (DeepMASS), which can score the structural similarity of unknown metabolite against the known one with MS/MS spectra and deep neural networks. We evaluated DeepMASS with leave-one-out cross-validation on MS/MS spectra of 662 compounds in KEGG and an external test on the biomarkers from male infertility study measured on Shimadzu LC-ESI-IT-TOF and Bruker Compact LC-ESI-QTOF. Results show that the identification of unknown compound is valid if its structure-related metabolite is available in the database. It provides an effective approach to extend the identification range of metabolites for existing MS/MS databases. |
doi_str_mv | 10.1021/acs.analchem.8b05405 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2210962054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210962054</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-a00ff6f10a64d841a073fc3dae86046d5192e2fd6882036650ea70573a7a54013</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EglL4BwhFYmFJ-2wnTjKi8im1YgjM0WtigyGxi-0I8e9J1MLAwPSWc-_TPYScUZhRYHSOtZ-hwbZ-ld0sX0OaQLpHJjRlEIs8Z_tkAgA8ZhnAETn2_g2AUqDikBxxKAoQGUzI07WUm2hVzldlfKUb2URlcH0deodtXOpOt-h0-IrK2jptXiJlXfRs3o39NNFKBlzbVgcZPTTSBK10jUFbc0IOFLZenu7ulDzf3jwt7uPl493D4moZY0J5iBFAKaEooEiaPKEIGVc1b1DmAhLRpLRgkqlmXANciBQkZpBmHDMc1lI-JZfb3o2zH730oeq0r2XbopG29xVjFArBBjUDevEHfbO9G_SNFIecccZGKtlStbPeO6mqjdMduq-KQjVarwbr1Y_1amd9iJ3vyvt1J5vf0I_mAYAtMMZ_H__b-Q3iUI9t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230823224</pqid></control><display><type>article</type><title>Deep MS/MS-Aided Structural-Similarity Scoring for Unknown Metabolite Identification</title><source>ACS Publications</source><creator>Ji, Hongchao ; Xu, Yamei ; Lu, Hongmei ; Zhang, Zhimin</creator><creatorcontrib>Ji, Hongchao ; Xu, Yamei ; Lu, Hongmei ; Zhang, Zhimin</creatorcontrib><description>Tandem mass spectrometry (MS/MS) is the workhorse for structural annotation of metabolites, because it can provide abundance of structural information. Currently, metabolite identification mainly relies on querying experimental spectra against public or in-house spectral databases. The identification is severely limited by the available spectra in the databases. Although, the metabolome consists of a huge number of different functional metabolites, the whole metabolome derives from a limited number of initial metabolites via bioreactions. In each bioreaction, the reactant and the product often change some substructures but are still structurally related. These structurally related metabolites often have related MS/MS spectra, which provide the possibility to identify unknown metabolites through known ones. However, it is challenging to explore the internal relationship between MS/MS spectra and structural similarity. In this study, we present the deep-learning-based approach for MS/MS-aided structural-similarity scoring (DeepMASS), which can score the structural similarity of unknown metabolite against the known one with MS/MS spectra and deep neural networks. We evaluated DeepMASS with leave-one-out cross-validation on MS/MS spectra of 662 compounds in KEGG and an external test on the biomarkers from male infertility study measured on Shimadzu LC-ESI-IT-TOF and Bruker Compact LC-ESI-QTOF. Results show that the identification of unknown compound is valid if its structure-related metabolite is available in the database. It provides an effective approach to extend the identification range of metabolites for existing MS/MS databases.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.8b05405</identifier><identifier>PMID: 30990670</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Annotations ; Artificial neural networks ; Biomarkers ; Chemistry ; Identification ; Infertility ; Mass spectrometry ; Mass spectroscopy ; Metabolites ; Neural networks ; Similarity ; Spectra ; Substructures</subject><ispartof>Analytical chemistry (Washington), 2019-05, Vol.91 (9), p.5629-5637</ispartof><rights>Copyright American Chemical Society May 7, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-a00ff6f10a64d841a073fc3dae86046d5192e2fd6882036650ea70573a7a54013</citedby><cites>FETCH-LOGICAL-a413t-a00ff6f10a64d841a073fc3dae86046d5192e2fd6882036650ea70573a7a54013</cites><orcidid>0000-0002-4686-4491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.8b05405$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.8b05405$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30990670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Hongchao</creatorcontrib><creatorcontrib>Xu, Yamei</creatorcontrib><creatorcontrib>Lu, Hongmei</creatorcontrib><creatorcontrib>Zhang, Zhimin</creatorcontrib><title>Deep MS/MS-Aided Structural-Similarity Scoring for Unknown Metabolite Identification</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Tandem mass spectrometry (MS/MS) is the workhorse for structural annotation of metabolites, because it can provide abundance of structural information. Currently, metabolite identification mainly relies on querying experimental spectra against public or in-house spectral databases. The identification is severely limited by the available spectra in the databases. Although, the metabolome consists of a huge number of different functional metabolites, the whole metabolome derives from a limited number of initial metabolites via bioreactions. In each bioreaction, the reactant and the product often change some substructures but are still structurally related. These structurally related metabolites often have related MS/MS spectra, which provide the possibility to identify unknown metabolites through known ones. However, it is challenging to explore the internal relationship between MS/MS spectra and structural similarity. In this study, we present the deep-learning-based approach for MS/MS-aided structural-similarity scoring (DeepMASS), which can score the structural similarity of unknown metabolite against the known one with MS/MS spectra and deep neural networks. We evaluated DeepMASS with leave-one-out cross-validation on MS/MS spectra of 662 compounds in KEGG and an external test on the biomarkers from male infertility study measured on Shimadzu LC-ESI-IT-TOF and Bruker Compact LC-ESI-QTOF. Results show that the identification of unknown compound is valid if its structure-related metabolite is available in the database. It provides an effective approach to extend the identification range of metabolites for existing MS/MS databases.</description><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>Biomarkers</subject><subject>Chemistry</subject><subject>Identification</subject><subject>Infertility</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolites</subject><subject>Neural networks</subject><subject>Similarity</subject><subject>Spectra</subject><subject>Substructures</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EglL4BwhFYmFJ-2wnTjKi8im1YgjM0WtigyGxi-0I8e9J1MLAwPSWc-_TPYScUZhRYHSOtZ-hwbZ-ld0sX0OaQLpHJjRlEIs8Z_tkAgA8ZhnAETn2_g2AUqDikBxxKAoQGUzI07WUm2hVzldlfKUb2URlcH0deodtXOpOt-h0-IrK2jptXiJlXfRs3o39NNFKBlzbVgcZPTTSBK10jUFbc0IOFLZenu7ulDzf3jwt7uPl493D4moZY0J5iBFAKaEooEiaPKEIGVc1b1DmAhLRpLRgkqlmXANciBQkZpBmHDMc1lI-JZfb3o2zH730oeq0r2XbopG29xVjFArBBjUDevEHfbO9G_SNFIecccZGKtlStbPeO6mqjdMduq-KQjVarwbr1Y_1amd9iJ3vyvt1J5vf0I_mAYAtMMZ_H__b-Q3iUI9t</recordid><startdate>20190507</startdate><enddate>20190507</enddate><creator>Ji, Hongchao</creator><creator>Xu, Yamei</creator><creator>Lu, Hongmei</creator><creator>Zhang, Zhimin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4686-4491</orcidid></search><sort><creationdate>20190507</creationdate><title>Deep MS/MS-Aided Structural-Similarity Scoring for Unknown Metabolite Identification</title><author>Ji, Hongchao ; Xu, Yamei ; Lu, Hongmei ; Zhang, Zhimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-a00ff6f10a64d841a073fc3dae86046d5192e2fd6882036650ea70573a7a54013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>Biomarkers</topic><topic>Chemistry</topic><topic>Identification</topic><topic>Infertility</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolites</topic><topic>Neural networks</topic><topic>Similarity</topic><topic>Spectra</topic><topic>Substructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Hongchao</creatorcontrib><creatorcontrib>Xu, Yamei</creatorcontrib><creatorcontrib>Lu, Hongmei</creatorcontrib><creatorcontrib>Zhang, Zhimin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Hongchao</au><au>Xu, Yamei</au><au>Lu, Hongmei</au><au>Zhang, Zhimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep MS/MS-Aided Structural-Similarity Scoring for Unknown Metabolite Identification</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2019-05-07</date><risdate>2019</risdate><volume>91</volume><issue>9</issue><spage>5629</spage><epage>5637</epage><pages>5629-5637</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Tandem mass spectrometry (MS/MS) is the workhorse for structural annotation of metabolites, because it can provide abundance of structural information. Currently, metabolite identification mainly relies on querying experimental spectra against public or in-house spectral databases. The identification is severely limited by the available spectra in the databases. Although, the metabolome consists of a huge number of different functional metabolites, the whole metabolome derives from a limited number of initial metabolites via bioreactions. In each bioreaction, the reactant and the product often change some substructures but are still structurally related. These structurally related metabolites often have related MS/MS spectra, which provide the possibility to identify unknown metabolites through known ones. However, it is challenging to explore the internal relationship between MS/MS spectra and structural similarity. In this study, we present the deep-learning-based approach for MS/MS-aided structural-similarity scoring (DeepMASS), which can score the structural similarity of unknown metabolite against the known one with MS/MS spectra and deep neural networks. We evaluated DeepMASS with leave-one-out cross-validation on MS/MS spectra of 662 compounds in KEGG and an external test on the biomarkers from male infertility study measured on Shimadzu LC-ESI-IT-TOF and Bruker Compact LC-ESI-QTOF. Results show that the identification of unknown compound is valid if its structure-related metabolite is available in the database. It provides an effective approach to extend the identification range of metabolites for existing MS/MS databases.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30990670</pmid><doi>10.1021/acs.analchem.8b05405</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4686-4491</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2019-05, Vol.91 (9), p.5629-5637 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2210962054 |
source | ACS Publications |
subjects | Annotations Artificial neural networks Biomarkers Chemistry Identification Infertility Mass spectrometry Mass spectroscopy Metabolites Neural networks Similarity Spectra Substructures |
title | Deep MS/MS-Aided Structural-Similarity Scoring for Unknown Metabolite Identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20MS/MS-Aided%20Structural-Similarity%20Scoring%20for%20Unknown%20Metabolite%20Identification&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Ji,%20Hongchao&rft.date=2019-05-07&rft.volume=91&rft.issue=9&rft.spage=5629&rft.epage=5637&rft.pages=5629-5637&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.8b05405&rft_dat=%3Cproquest_cross%3E2210962054%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230823224&rft_id=info:pmid/30990670&rfr_iscdi=true |