Deep MS/MS-Aided Structural-Similarity Scoring for Unknown Metabolite Identification

Tandem mass spectrometry (MS/MS) is the workhorse for structural annotation of metabolites, because it can provide abundance of structural information. Currently, metabolite identification mainly relies on querying experimental spectra against public or in-house spectral databases. The identificatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2019-05, Vol.91 (9), p.5629-5637
Hauptverfasser: Ji, Hongchao, Xu, Yamei, Lu, Hongmei, Zhang, Zhimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5637
container_issue 9
container_start_page 5629
container_title Analytical chemistry (Washington)
container_volume 91
creator Ji, Hongchao
Xu, Yamei
Lu, Hongmei
Zhang, Zhimin
description Tandem mass spectrometry (MS/MS) is the workhorse for structural annotation of metabolites, because it can provide abundance of structural information. Currently, metabolite identification mainly relies on querying experimental spectra against public or in-house spectral databases. The identification is severely limited by the available spectra in the databases. Although, the metabolome consists of a huge number of different functional metabolites, the whole metabolome derives from a limited number of initial metabolites via bioreactions. In each bioreaction, the reactant and the product often change some substructures but are still structurally related. These structurally related metabolites often have related MS/MS spectra, which provide the possibility to identify unknown metabolites through known ones. However, it is challenging to explore the internal relationship between MS/MS spectra and structural similarity. In this study, we present the deep-learning-based approach for MS/MS-aided structural-similarity scoring (DeepMASS), which can score the structural similarity of unknown metabolite against the known one with MS/MS spectra and deep neural networks. We evaluated DeepMASS with leave-one-out cross-validation on MS/MS spectra of 662 compounds in KEGG and an external test on the biomarkers from male infertility study measured on Shimadzu LC-ESI-IT-TOF and Bruker Compact LC-ESI-QTOF. Results show that the identification of unknown compound is valid if its structure-related metabolite is available in the database. It provides an effective approach to extend the identification range of metabolites for existing MS/MS databases.
doi_str_mv 10.1021/acs.analchem.8b05405
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2210962054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210962054</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-a00ff6f10a64d841a073fc3dae86046d5192e2fd6882036650ea70573a7a54013</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EglL4BwhFYmFJ-2wnTjKi8im1YgjM0WtigyGxi-0I8e9J1MLAwPSWc-_TPYScUZhRYHSOtZ-hwbZ-ld0sX0OaQLpHJjRlEIs8Z_tkAgA8ZhnAETn2_g2AUqDikBxxKAoQGUzI07WUm2hVzldlfKUb2URlcH0deodtXOpOt-h0-IrK2jptXiJlXfRs3o39NNFKBlzbVgcZPTTSBK10jUFbc0IOFLZenu7ulDzf3jwt7uPl493D4moZY0J5iBFAKaEooEiaPKEIGVc1b1DmAhLRpLRgkqlmXANciBQkZpBmHDMc1lI-JZfb3o2zH730oeq0r2XbopG29xVjFArBBjUDevEHfbO9G_SNFIecccZGKtlStbPeO6mqjdMduq-KQjVarwbr1Y_1amd9iJ3vyvt1J5vf0I_mAYAtMMZ_H__b-Q3iUI9t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230823224</pqid></control><display><type>article</type><title>Deep MS/MS-Aided Structural-Similarity Scoring for Unknown Metabolite Identification</title><source>ACS Publications</source><creator>Ji, Hongchao ; Xu, Yamei ; Lu, Hongmei ; Zhang, Zhimin</creator><creatorcontrib>Ji, Hongchao ; Xu, Yamei ; Lu, Hongmei ; Zhang, Zhimin</creatorcontrib><description>Tandem mass spectrometry (MS/MS) is the workhorse for structural annotation of metabolites, because it can provide abundance of structural information. Currently, metabolite identification mainly relies on querying experimental spectra against public or in-house spectral databases. The identification is severely limited by the available spectra in the databases. Although, the metabolome consists of a huge number of different functional metabolites, the whole metabolome derives from a limited number of initial metabolites via bioreactions. In each bioreaction, the reactant and the product often change some substructures but are still structurally related. These structurally related metabolites often have related MS/MS spectra, which provide the possibility to identify unknown metabolites through known ones. However, it is challenging to explore the internal relationship between MS/MS spectra and structural similarity. In this study, we present the deep-learning-based approach for MS/MS-aided structural-similarity scoring (DeepMASS), which can score the structural similarity of unknown metabolite against the known one with MS/MS spectra and deep neural networks. We evaluated DeepMASS with leave-one-out cross-validation on MS/MS spectra of 662 compounds in KEGG and an external test on the biomarkers from male infertility study measured on Shimadzu LC-ESI-IT-TOF and Bruker Compact LC-ESI-QTOF. Results show that the identification of unknown compound is valid if its structure-related metabolite is available in the database. It provides an effective approach to extend the identification range of metabolites for existing MS/MS databases.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.8b05405</identifier><identifier>PMID: 30990670</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Annotations ; Artificial neural networks ; Biomarkers ; Chemistry ; Identification ; Infertility ; Mass spectrometry ; Mass spectroscopy ; Metabolites ; Neural networks ; Similarity ; Spectra ; Substructures</subject><ispartof>Analytical chemistry (Washington), 2019-05, Vol.91 (9), p.5629-5637</ispartof><rights>Copyright American Chemical Society May 7, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-a00ff6f10a64d841a073fc3dae86046d5192e2fd6882036650ea70573a7a54013</citedby><cites>FETCH-LOGICAL-a413t-a00ff6f10a64d841a073fc3dae86046d5192e2fd6882036650ea70573a7a54013</cites><orcidid>0000-0002-4686-4491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.8b05405$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.8b05405$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30990670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Hongchao</creatorcontrib><creatorcontrib>Xu, Yamei</creatorcontrib><creatorcontrib>Lu, Hongmei</creatorcontrib><creatorcontrib>Zhang, Zhimin</creatorcontrib><title>Deep MS/MS-Aided Structural-Similarity Scoring for Unknown Metabolite Identification</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Tandem mass spectrometry (MS/MS) is the workhorse for structural annotation of metabolites, because it can provide abundance of structural information. Currently, metabolite identification mainly relies on querying experimental spectra against public or in-house spectral databases. The identification is severely limited by the available spectra in the databases. Although, the metabolome consists of a huge number of different functional metabolites, the whole metabolome derives from a limited number of initial metabolites via bioreactions. In each bioreaction, the reactant and the product often change some substructures but are still structurally related. These structurally related metabolites often have related MS/MS spectra, which provide the possibility to identify unknown metabolites through known ones. However, it is challenging to explore the internal relationship between MS/MS spectra and structural similarity. In this study, we present the deep-learning-based approach for MS/MS-aided structural-similarity scoring (DeepMASS), which can score the structural similarity of unknown metabolite against the known one with MS/MS spectra and deep neural networks. We evaluated DeepMASS with leave-one-out cross-validation on MS/MS spectra of 662 compounds in KEGG and an external test on the biomarkers from male infertility study measured on Shimadzu LC-ESI-IT-TOF and Bruker Compact LC-ESI-QTOF. Results show that the identification of unknown compound is valid if its structure-related metabolite is available in the database. It provides an effective approach to extend the identification range of metabolites for existing MS/MS databases.</description><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>Biomarkers</subject><subject>Chemistry</subject><subject>Identification</subject><subject>Infertility</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolites</subject><subject>Neural networks</subject><subject>Similarity</subject><subject>Spectra</subject><subject>Substructures</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EglL4BwhFYmFJ-2wnTjKi8im1YgjM0WtigyGxi-0I8e9J1MLAwPSWc-_TPYScUZhRYHSOtZ-hwbZ-ld0sX0OaQLpHJjRlEIs8Z_tkAgA8ZhnAETn2_g2AUqDikBxxKAoQGUzI07WUm2hVzldlfKUb2URlcH0deodtXOpOt-h0-IrK2jptXiJlXfRs3o39NNFKBlzbVgcZPTTSBK10jUFbc0IOFLZenu7ulDzf3jwt7uPl493D4moZY0J5iBFAKaEooEiaPKEIGVc1b1DmAhLRpLRgkqlmXANciBQkZpBmHDMc1lI-JZfb3o2zH730oeq0r2XbopG29xVjFArBBjUDevEHfbO9G_SNFIecccZGKtlStbPeO6mqjdMduq-KQjVarwbr1Y_1amd9iJ3vyvt1J5vf0I_mAYAtMMZ_H__b-Q3iUI9t</recordid><startdate>20190507</startdate><enddate>20190507</enddate><creator>Ji, Hongchao</creator><creator>Xu, Yamei</creator><creator>Lu, Hongmei</creator><creator>Zhang, Zhimin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4686-4491</orcidid></search><sort><creationdate>20190507</creationdate><title>Deep MS/MS-Aided Structural-Similarity Scoring for Unknown Metabolite Identification</title><author>Ji, Hongchao ; Xu, Yamei ; Lu, Hongmei ; Zhang, Zhimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-a00ff6f10a64d841a073fc3dae86046d5192e2fd6882036650ea70573a7a54013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>Biomarkers</topic><topic>Chemistry</topic><topic>Identification</topic><topic>Infertility</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolites</topic><topic>Neural networks</topic><topic>Similarity</topic><topic>Spectra</topic><topic>Substructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Hongchao</creatorcontrib><creatorcontrib>Xu, Yamei</creatorcontrib><creatorcontrib>Lu, Hongmei</creatorcontrib><creatorcontrib>Zhang, Zhimin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Hongchao</au><au>Xu, Yamei</au><au>Lu, Hongmei</au><au>Zhang, Zhimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep MS/MS-Aided Structural-Similarity Scoring for Unknown Metabolite Identification</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2019-05-07</date><risdate>2019</risdate><volume>91</volume><issue>9</issue><spage>5629</spage><epage>5637</epage><pages>5629-5637</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Tandem mass spectrometry (MS/MS) is the workhorse for structural annotation of metabolites, because it can provide abundance of structural information. Currently, metabolite identification mainly relies on querying experimental spectra against public or in-house spectral databases. The identification is severely limited by the available spectra in the databases. Although, the metabolome consists of a huge number of different functional metabolites, the whole metabolome derives from a limited number of initial metabolites via bioreactions. In each bioreaction, the reactant and the product often change some substructures but are still structurally related. These structurally related metabolites often have related MS/MS spectra, which provide the possibility to identify unknown metabolites through known ones. However, it is challenging to explore the internal relationship between MS/MS spectra and structural similarity. In this study, we present the deep-learning-based approach for MS/MS-aided structural-similarity scoring (DeepMASS), which can score the structural similarity of unknown metabolite against the known one with MS/MS spectra and deep neural networks. We evaluated DeepMASS with leave-one-out cross-validation on MS/MS spectra of 662 compounds in KEGG and an external test on the biomarkers from male infertility study measured on Shimadzu LC-ESI-IT-TOF and Bruker Compact LC-ESI-QTOF. Results show that the identification of unknown compound is valid if its structure-related metabolite is available in the database. It provides an effective approach to extend the identification range of metabolites for existing MS/MS databases.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30990670</pmid><doi>10.1021/acs.analchem.8b05405</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4686-4491</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2019-05, Vol.91 (9), p.5629-5637
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2210962054
source ACS Publications
subjects Annotations
Artificial neural networks
Biomarkers
Chemistry
Identification
Infertility
Mass spectrometry
Mass spectroscopy
Metabolites
Neural networks
Similarity
Spectra
Substructures
title Deep MS/MS-Aided Structural-Similarity Scoring for Unknown Metabolite Identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20MS/MS-Aided%20Structural-Similarity%20Scoring%20for%20Unknown%20Metabolite%20Identification&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Ji,%20Hongchao&rft.date=2019-05-07&rft.volume=91&rft.issue=9&rft.spage=5629&rft.epage=5637&rft.pages=5629-5637&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.8b05405&rft_dat=%3Cproquest_cross%3E2210962054%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230823224&rft_id=info:pmid/30990670&rfr_iscdi=true