Detecting the mutational signature of homologous recombination deficiency in clinical samples

Mutations in BRCA1 and/or BRCA2 ( BRCA1/2 ) are the most common indication of deficiency in the homologous recombination (HR) DNA repair pathway. However, recent genome-wide analyses have shown that the same pattern of mutations found in BRCA1 / 2 -mutant tumors is also present in several other tumo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2019-05, Vol.51 (5), p.912-919
Hauptverfasser: Gulhan, Doga C., Lee, Jake June-Koo, Melloni, Giorgio E. M., Cortés-Ciriano, Isidro, Park, Peter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 919
container_issue 5
container_start_page 912
container_title Nature genetics
container_volume 51
creator Gulhan, Doga C.
Lee, Jake June-Koo
Melloni, Giorgio E. M.
Cortés-Ciriano, Isidro
Park, Peter J.
description Mutations in BRCA1 and/or BRCA2 ( BRCA1/2 ) are the most common indication of deficiency in the homologous recombination (HR) DNA repair pathway. However, recent genome-wide analyses have shown that the same pattern of mutations found in BRCA1 / 2 -mutant tumors is also present in several other tumors. Here, we present a new computational tool called Signature Multivariate Analysis (SigMA), which can be used to accurately detect the mutational signature associated with HR deficiency from targeted gene panels. Whereas previous methods require whole-genome or whole-exome data, our method detects the HR-deficiency signature even from low mutation counts, by using a likelihood-based measure combined with machine-learning techniques. Cell lines that we identify as HR deficient show a significant response to poly (ADP-ribose) polymerase (PARP) inhibitors; patients with ovarian cancer whom we found to be HR deficient show a significantly longer overall survival with platinum regimens. By enabling panel-based identification of mutational signatures, our method substantially increases the number of patients that may be considered for treatments targeting HR deficiency. Signature Multivariate Analysis is a new computational tool that detects the mutational signature of homologous-recombination deficiency in clinical samples sequenced with targeted panels, enabling the identification of patients who are responsive to poly (ADP-ribose) polymerase inhibition therapy.
doi_str_mv 10.1038/s41588-019-0390-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2210260756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A584346650</galeid><sourcerecordid>A584346650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-7ed17efeb0f294d628de8768290982aeaabc47db7e63de24f47902fd571e39f13</originalsourceid><addsrcrecordid>eNqNkk1rFTEYhQdRbK3-ADcy4EYXU_M1SWZZqq2FQqF-7CRkMm-mKTPJNcmA_ffN9FbLlQqSRULynMObw6mq1xgdYkTlh8RwK2WDcNcg2qGGPKn2cct4gwWWT8sZcdwwRPle9SKla4QwY0g-r_Yo6qRsMduvfnyEDCY7P9b5Cup5yTq74PVUJzd6nZcIdbD1VZjDFMawpDqCCXPv_B1XD2CdceDNTe18bSbnnVnFet5MkF5Wz6yeEry63w-qbyefvh5_bs4vTs-Oj84b0wqaGwEDFmChR5Z0bOBEDiAFl6QrcxINWveGiaEXwOkAhFkmOkTs0AoMtLOYHlTvtr6bGH4ukLKaXTIwTdpDmVkRghHhSLS8oG__Qq_DEsuHV4rikpak7IEa9QTKeRty1GY1VUetZJRx3qJCHT5ClTXA7EzwJZtyvyN4vyMoTIZfedRLSursy-X_sxffd1m8ZU0MKUWwahPdrOONwkitVVHbqqhSFbVWRZGieXMfxNLPMPxR_O5GAcgWSOXJjxAfkvq36y3l3Max</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231403834</pqid></control><display><type>article</type><title>Detecting the mutational signature of homologous recombination deficiency in clinical samples</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Gulhan, Doga C. ; Lee, Jake June-Koo ; Melloni, Giorgio E. M. ; Cortés-Ciriano, Isidro ; Park, Peter J.</creator><creatorcontrib>Gulhan, Doga C. ; Lee, Jake June-Koo ; Melloni, Giorgio E. M. ; Cortés-Ciriano, Isidro ; Park, Peter J.</creatorcontrib><description>Mutations in BRCA1 and/or BRCA2 ( BRCA1/2 ) are the most common indication of deficiency in the homologous recombination (HR) DNA repair pathway. However, recent genome-wide analyses have shown that the same pattern of mutations found in BRCA1 / 2 -mutant tumors is also present in several other tumors. Here, we present a new computational tool called Signature Multivariate Analysis (SigMA), which can be used to accurately detect the mutational signature associated with HR deficiency from targeted gene panels. Whereas previous methods require whole-genome or whole-exome data, our method detects the HR-deficiency signature even from low mutation counts, by using a likelihood-based measure combined with machine-learning techniques. Cell lines that we identify as HR deficient show a significant response to poly (ADP-ribose) polymerase (PARP) inhibitors; patients with ovarian cancer whom we found to be HR deficient show a significantly longer overall survival with platinum regimens. By enabling panel-based identification of mutational signatures, our method substantially increases the number of patients that may be considered for treatments targeting HR deficiency. Signature Multivariate Analysis is a new computational tool that detects the mutational signature of homologous-recombination deficiency in clinical samples sequenced with targeted panels, enabling the identification of patients who are responsive to poly (ADP-ribose) polymerase inhibition therapy.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-019-0390-2</identifier><identifier>PMID: 30988514</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/794 ; 631/67 ; 692/699/67/1347 ; 692/699/67/1517 ; Adenosine diphosphate ; Agriculture ; Algorithms ; Animal Genetics and Genomics ; Biomedical and Life Sciences ; Biomedicine ; Biotechnology ; BRCA1 protein ; BRCA2 protein ; Breast cancer ; Cancer ; Cancer Research ; Cancer therapies ; Computer applications ; Decomposition ; Deoxyribonucleic acid ; DNA ; DNA repair ; Gene Function ; Genes ; Genetic aspects ; Genetic recombination ; Genetic research ; Genetic testing ; Genomes ; Genomics ; Health aspects ; Homologous recombination ; Homology ; Human Genetics ; Identification and classification ; Learning algorithms ; Machine learning ; Medical genetics ; Methods ; Monosaccharides ; Multivariate analysis ; Mutation ; Ovarian cancer ; Platinum ; Poly(ADP-ribose) polymerase ; Prostate cancer ; Ribose ; Signatures ; Software ; technical-report ; Tumors</subject><ispartof>Nature genetics, 2019-05, Vol.51 (5), p.912-919</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-7ed17efeb0f294d628de8768290982aeaabc47db7e63de24f47902fd571e39f13</citedby><cites>FETCH-LOGICAL-c573t-7ed17efeb0f294d628de8768290982aeaabc47db7e63de24f47902fd571e39f13</cites><orcidid>0000-0001-6371-1334 ; 0000-0002-2036-494X ; 0000-0001-9378-960X ; 0000-0003-1348-4094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-019-0390-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-019-0390-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30988514$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gulhan, Doga C.</creatorcontrib><creatorcontrib>Lee, Jake June-Koo</creatorcontrib><creatorcontrib>Melloni, Giorgio E. M.</creatorcontrib><creatorcontrib>Cortés-Ciriano, Isidro</creatorcontrib><creatorcontrib>Park, Peter J.</creatorcontrib><title>Detecting the mutational signature of homologous recombination deficiency in clinical samples</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Mutations in BRCA1 and/or BRCA2 ( BRCA1/2 ) are the most common indication of deficiency in the homologous recombination (HR) DNA repair pathway. However, recent genome-wide analyses have shown that the same pattern of mutations found in BRCA1 / 2 -mutant tumors is also present in several other tumors. Here, we present a new computational tool called Signature Multivariate Analysis (SigMA), which can be used to accurately detect the mutational signature associated with HR deficiency from targeted gene panels. Whereas previous methods require whole-genome or whole-exome data, our method detects the HR-deficiency signature even from low mutation counts, by using a likelihood-based measure combined with machine-learning techniques. Cell lines that we identify as HR deficient show a significant response to poly (ADP-ribose) polymerase (PARP) inhibitors; patients with ovarian cancer whom we found to be HR deficient show a significantly longer overall survival with platinum regimens. By enabling panel-based identification of mutational signatures, our method substantially increases the number of patients that may be considered for treatments targeting HR deficiency. Signature Multivariate Analysis is a new computational tool that detects the mutational signature of homologous-recombination deficiency in clinical samples sequenced with targeted panels, enabling the identification of patients who are responsive to poly (ADP-ribose) polymerase inhibition therapy.</description><subject>631/114/794</subject><subject>631/67</subject><subject>692/699/67/1347</subject><subject>692/699/67/1517</subject><subject>Adenosine diphosphate</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Animal Genetics and Genomics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>BRCA1 protein</subject><subject>BRCA2 protein</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Cancer therapies</subject><subject>Computer applications</subject><subject>Decomposition</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA repair</subject><subject>Gene Function</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic recombination</subject><subject>Genetic research</subject><subject>Genetic testing</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>Homologous recombination</subject><subject>Homology</subject><subject>Human Genetics</subject><subject>Identification and classification</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medical genetics</subject><subject>Methods</subject><subject>Monosaccharides</subject><subject>Multivariate analysis</subject><subject>Mutation</subject><subject>Ovarian cancer</subject><subject>Platinum</subject><subject>Poly(ADP-ribose) polymerase</subject><subject>Prostate cancer</subject><subject>Ribose</subject><subject>Signatures</subject><subject>Software</subject><subject>technical-report</subject><subject>Tumors</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkk1rFTEYhQdRbK3-ADcy4EYXU_M1SWZZqq2FQqF-7CRkMm-mKTPJNcmA_ffN9FbLlQqSRULynMObw6mq1xgdYkTlh8RwK2WDcNcg2qGGPKn2cct4gwWWT8sZcdwwRPle9SKla4QwY0g-r_Yo6qRsMduvfnyEDCY7P9b5Cup5yTq74PVUJzd6nZcIdbD1VZjDFMawpDqCCXPv_B1XD2CdceDNTe18bSbnnVnFet5MkF5Wz6yeEry63w-qbyefvh5_bs4vTs-Oj84b0wqaGwEDFmChR5Z0bOBEDiAFl6QrcxINWveGiaEXwOkAhFkmOkTs0AoMtLOYHlTvtr6bGH4ukLKaXTIwTdpDmVkRghHhSLS8oG__Qq_DEsuHV4rikpak7IEa9QTKeRty1GY1VUetZJRx3qJCHT5ClTXA7EzwJZtyvyN4vyMoTIZfedRLSursy-X_sxffd1m8ZU0MKUWwahPdrOONwkitVVHbqqhSFbVWRZGieXMfxNLPMPxR_O5GAcgWSOXJjxAfkvq36y3l3Max</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Gulhan, Doga C.</creator><creator>Lee, Jake June-Koo</creator><creator>Melloni, Giorgio E. M.</creator><creator>Cortés-Ciriano, Isidro</creator><creator>Park, Peter J.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6371-1334</orcidid><orcidid>https://orcid.org/0000-0002-2036-494X</orcidid><orcidid>https://orcid.org/0000-0001-9378-960X</orcidid><orcidid>https://orcid.org/0000-0003-1348-4094</orcidid></search><sort><creationdate>20190501</creationdate><title>Detecting the mutational signature of homologous recombination deficiency in clinical samples</title><author>Gulhan, Doga C. ; Lee, Jake June-Koo ; Melloni, Giorgio E. M. ; Cortés-Ciriano, Isidro ; Park, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-7ed17efeb0f294d628de8768290982aeaabc47db7e63de24f47902fd571e39f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/114/794</topic><topic>631/67</topic><topic>692/699/67/1347</topic><topic>692/699/67/1517</topic><topic>Adenosine diphosphate</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Animal Genetics and Genomics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>BRCA1 protein</topic><topic>BRCA2 protein</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Cancer therapies</topic><topic>Computer applications</topic><topic>Decomposition</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA repair</topic><topic>Gene Function</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic recombination</topic><topic>Genetic research</topic><topic>Genetic testing</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>Homologous recombination</topic><topic>Homology</topic><topic>Human Genetics</topic><topic>Identification and classification</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medical genetics</topic><topic>Methods</topic><topic>Monosaccharides</topic><topic>Multivariate analysis</topic><topic>Mutation</topic><topic>Ovarian cancer</topic><topic>Platinum</topic><topic>Poly(ADP-ribose) polymerase</topic><topic>Prostate cancer</topic><topic>Ribose</topic><topic>Signatures</topic><topic>Software</topic><topic>technical-report</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gulhan, Doga C.</creatorcontrib><creatorcontrib>Lee, Jake June-Koo</creatorcontrib><creatorcontrib>Melloni, Giorgio E. M.</creatorcontrib><creatorcontrib>Cortés-Ciriano, Isidro</creatorcontrib><creatorcontrib>Park, Peter J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gulhan, Doga C.</au><au>Lee, Jake June-Koo</au><au>Melloni, Giorgio E. M.</au><au>Cortés-Ciriano, Isidro</au><au>Park, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting the mutational signature of homologous recombination deficiency in clinical samples</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>51</volume><issue>5</issue><spage>912</spage><epage>919</epage><pages>912-919</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Mutations in BRCA1 and/or BRCA2 ( BRCA1/2 ) are the most common indication of deficiency in the homologous recombination (HR) DNA repair pathway. However, recent genome-wide analyses have shown that the same pattern of mutations found in BRCA1 / 2 -mutant tumors is also present in several other tumors. Here, we present a new computational tool called Signature Multivariate Analysis (SigMA), which can be used to accurately detect the mutational signature associated with HR deficiency from targeted gene panels. Whereas previous methods require whole-genome or whole-exome data, our method detects the HR-deficiency signature even from low mutation counts, by using a likelihood-based measure combined with machine-learning techniques. Cell lines that we identify as HR deficient show a significant response to poly (ADP-ribose) polymerase (PARP) inhibitors; patients with ovarian cancer whom we found to be HR deficient show a significantly longer overall survival with platinum regimens. By enabling panel-based identification of mutational signatures, our method substantially increases the number of patients that may be considered for treatments targeting HR deficiency. Signature Multivariate Analysis is a new computational tool that detects the mutational signature of homologous-recombination deficiency in clinical samples sequenced with targeted panels, enabling the identification of patients who are responsive to poly (ADP-ribose) polymerase inhibition therapy.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30988514</pmid><doi>10.1038/s41588-019-0390-2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6371-1334</orcidid><orcidid>https://orcid.org/0000-0002-2036-494X</orcidid><orcidid>https://orcid.org/0000-0001-9378-960X</orcidid><orcidid>https://orcid.org/0000-0003-1348-4094</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2019-05, Vol.51 (5), p.912-919
issn 1061-4036
1546-1718
language eng
recordid cdi_proquest_miscellaneous_2210260756
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/114/794
631/67
692/699/67/1347
692/699/67/1517
Adenosine diphosphate
Agriculture
Algorithms
Animal Genetics and Genomics
Biomedical and Life Sciences
Biomedicine
Biotechnology
BRCA1 protein
BRCA2 protein
Breast cancer
Cancer
Cancer Research
Cancer therapies
Computer applications
Decomposition
Deoxyribonucleic acid
DNA
DNA repair
Gene Function
Genes
Genetic aspects
Genetic recombination
Genetic research
Genetic testing
Genomes
Genomics
Health aspects
Homologous recombination
Homology
Human Genetics
Identification and classification
Learning algorithms
Machine learning
Medical genetics
Methods
Monosaccharides
Multivariate analysis
Mutation
Ovarian cancer
Platinum
Poly(ADP-ribose) polymerase
Prostate cancer
Ribose
Signatures
Software
technical-report
Tumors
title Detecting the mutational signature of homologous recombination deficiency in clinical samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A34%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20the%20mutational%20signature%20of%20homologous%20recombination%20deficiency%20in%20clinical%20samples&rft.jtitle=Nature%20genetics&rft.au=Gulhan,%20Doga%20C.&rft.date=2019-05-01&rft.volume=51&rft.issue=5&rft.spage=912&rft.epage=919&rft.pages=912-919&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-019-0390-2&rft_dat=%3Cgale_proqu%3EA584346650%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231403834&rft_id=info:pmid/30988514&rft_galeid=A584346650&rfr_iscdi=true