Role of K+ channels in maintaining the synchrony of spontaneous Ca2+ transients in the mural cells of rat rectal submucosal arterioles
Mural cells in precapillary arterioles (PCAs) generate spontaneous Ca 2+ transients primarily arising from the periodic release of Ca 2+ from sarcoendoplasmic reticulum (SR/ER). The Ca 2+ release induces Ca 2+ -activated chloride channel (CaCC)-dependent depolarisations that spread to neighbouring m...
Gespeichert in:
Veröffentlicht in: | Pflügers Archiv 2019-07, Vol.471 (7), p.1025-1040 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1040 |
---|---|
container_issue | 7 |
container_start_page | 1025 |
container_title | Pflügers Archiv |
container_volume | 471 |
creator | Mitsui, Retsu Hashitani, Hikaru |
description | Mural cells in precapillary arterioles (PCAs) generate spontaneous Ca
2+
transients primarily arising from the periodic release of Ca
2+
from sarcoendoplasmic reticulum (SR/ER). The Ca
2+
release induces Ca
2+
-activated chloride channel (CaCC)-dependent depolarisations that spread to neighbouring mural cells to develop the synchrony of their Ca
2+
transients. Here, we explored the roles of K
+
channels in maintaining the synchrony of spontaneous Ca
2+
transients. Intracellular Ca
2+
dynamics in mural cells were visualised by Cal-520 fluorescence Ca
2+
imaging in the submucosal PCAs of rat rectum. Increasing extracellular K
+
concentration ([K
+
]
o
) from 5.9 to 29.7 mM converted synchronous spontaneous Ca
2+
transients into asynchronous, high-frequency Ca
2+
transients. Similarly, the blockade of inward rectifier K
+
(K
ir
) channels with Ba
2+
(50 μM) or K
v
7 voltage-dependent K
+
(K
v
7) channels with XE 991 (10 μM) disrupted the synchrony of spontaneous Ca
2+
transients, while the blockers for large-, intermediate- or small-conductance Ca
2+
-activated K
+
channels had no effect. K
ir
2.1 immunoreactivity was detected in the arteriolar endothelium but not mural cells. In the PCAs that had been pretreated with XE 991 or Ba
2+
, nifedipine (1 μM) attenuated the asynchronous Ca
2+
transients but failed to restore their synchrony. In contrast, levcromakalim, an ATP-sensitive K
+
channel opener, restored the synchronous Ca
2+
transients. Thus, constitutively active K
v
7 and K
ir
channels appear to be involved in maintaining the relatively hyperpolarised membrane of mural cells. The hyperpolarised membrane prevents depolarisation-induced ‘premature’ Ca
2+
transients to ensure sufficient SR/ER Ca
2+
refilling that is required for regenerative Ca
2+
release resulting in synchronous Ca
2+
transients amongst the mural cells. |
doi_str_mv | 10.1007/s00424-019-02274-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2210006009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2209102054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-9c23db73b5d7369b388a137391ce79758c3a6c156c61ba04636adb0e250a27c73</originalsourceid><addsrcrecordid>eNp9kc1KxDAUhYMoOP68gKuAG0GqN0mbtEsZ_ENBEF2HNJNxKm0y5qaLeQGf24wVBBcuQsLNdw4nOYScMLhgAOoSAUpeFsCaAjhXZSF2yIyVghccmNglMwDBCqlkvU8OEN8BgJc1n5HP59A7Gpb04ZzalfHe9Ug7TwfT-ZRX599oWjmKG29XMfjNlsV1yJfehRHp3PBzmqLx2DmfvrVbfhij6al1fbbLimgSjc6mPMOxHUYbMB9NTC52OQAekb2l6dEd_-yH5PXm-mV-Vzw-3d7Prx4LK8o6FY3lYtEq0VYLJWTTiro2TCjRMOtUo6raCiMtq6SVrDVQSiHNogXHKzBcWSUOydnku47hY3SY9NDhNuX0Gs15_k6QAE1GT_-g72GMPqfLFDQMOFRlpvhE2RgQo1vqdewGEzeagd5Wo6dqdK5Gf1ejRRaJSYQZ9m8u_lr_o_oCPZmReQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209102054</pqid></control><display><type>article</type><title>Role of K+ channels in maintaining the synchrony of spontaneous Ca2+ transients in the mural cells of rat rectal submucosal arterioles</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mitsui, Retsu ; Hashitani, Hikaru</creator><creatorcontrib>Mitsui, Retsu ; Hashitani, Hikaru</creatorcontrib><description>Mural cells in precapillary arterioles (PCAs) generate spontaneous Ca
2+
transients primarily arising from the periodic release of Ca
2+
from sarcoendoplasmic reticulum (SR/ER). The Ca
2+
release induces Ca
2+
-activated chloride channel (CaCC)-dependent depolarisations that spread to neighbouring mural cells to develop the synchrony of their Ca
2+
transients. Here, we explored the roles of K
+
channels in maintaining the synchrony of spontaneous Ca
2+
transients. Intracellular Ca
2+
dynamics in mural cells were visualised by Cal-520 fluorescence Ca
2+
imaging in the submucosal PCAs of rat rectum. Increasing extracellular K
+
concentration ([K
+
]
o
) from 5.9 to 29.7 mM converted synchronous spontaneous Ca
2+
transients into asynchronous, high-frequency Ca
2+
transients. Similarly, the blockade of inward rectifier K
+
(K
ir
) channels with Ba
2+
(50 μM) or K
v
7 voltage-dependent K
+
(K
v
7) channels with XE 991 (10 μM) disrupted the synchrony of spontaneous Ca
2+
transients, while the blockers for large-, intermediate- or small-conductance Ca
2+
-activated K
+
channels had no effect. K
ir
2.1 immunoreactivity was detected in the arteriolar endothelium but not mural cells. In the PCAs that had been pretreated with XE 991 or Ba
2+
, nifedipine (1 μM) attenuated the asynchronous Ca
2+
transients but failed to restore their synchrony. In contrast, levcromakalim, an ATP-sensitive K
+
channel opener, restored the synchronous Ca
2+
transients. Thus, constitutively active K
v
7 and K
ir
channels appear to be involved in maintaining the relatively hyperpolarised membrane of mural cells. The hyperpolarised membrane prevents depolarisation-induced ‘premature’ Ca
2+
transients to ensure sufficient SR/ER Ca
2+
refilling that is required for regenerative Ca
2+
release resulting in synchronous Ca
2+
transients amongst the mural cells.</description><identifier>ISSN: 0031-6768</identifier><identifier>EISSN: 1432-2013</identifier><identifier>DOI: 10.1007/s00424-019-02274-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Arterioles ; Biomedical and Life Sciences ; Biomedicine ; Calcium (intracellular) ; Calcium channels ; Calcium chloride ; Calcium conductance ; Calcium imaging ; Calcium signalling ; Cell Biology ; Endothelium ; Human Physiology ; Immunoreactivity ; Molecular Medicine ; Neurosciences ; Nifedipine ; Potassium channels ; Potassium channels (calcium-gated) ; Potassium channels (inwardly-rectifying) ; Potassium channels (voltage-gated) ; Potassium conductance ; Receptors ; Rectum ; Signaling and Cell Physiology</subject><ispartof>Pflügers Archiv, 2019-07, Vol.471 (7), p.1025-1040</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Pflügers Archiv - European Journal of Physiology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-9c23db73b5d7369b388a137391ce79758c3a6c156c61ba04636adb0e250a27c73</citedby><cites>FETCH-LOGICAL-c348t-9c23db73b5d7369b388a137391ce79758c3a6c156c61ba04636adb0e250a27c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00424-019-02274-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00424-019-02274-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Mitsui, Retsu</creatorcontrib><creatorcontrib>Hashitani, Hikaru</creatorcontrib><title>Role of K+ channels in maintaining the synchrony of spontaneous Ca2+ transients in the mural cells of rat rectal submucosal arterioles</title><title>Pflügers Archiv</title><addtitle>Pflugers Arch - Eur J Physiol</addtitle><description>Mural cells in precapillary arterioles (PCAs) generate spontaneous Ca
2+
transients primarily arising from the periodic release of Ca
2+
from sarcoendoplasmic reticulum (SR/ER). The Ca
2+
release induces Ca
2+
-activated chloride channel (CaCC)-dependent depolarisations that spread to neighbouring mural cells to develop the synchrony of their Ca
2+
transients. Here, we explored the roles of K
+
channels in maintaining the synchrony of spontaneous Ca
2+
transients. Intracellular Ca
2+
dynamics in mural cells were visualised by Cal-520 fluorescence Ca
2+
imaging in the submucosal PCAs of rat rectum. Increasing extracellular K
+
concentration ([K
+
]
o
) from 5.9 to 29.7 mM converted synchronous spontaneous Ca
2+
transients into asynchronous, high-frequency Ca
2+
transients. Similarly, the blockade of inward rectifier K
+
(K
ir
) channels with Ba
2+
(50 μM) or K
v
7 voltage-dependent K
+
(K
v
7) channels with XE 991 (10 μM) disrupted the synchrony of spontaneous Ca
2+
transients, while the blockers for large-, intermediate- or small-conductance Ca
2+
-activated K
+
channels had no effect. K
ir
2.1 immunoreactivity was detected in the arteriolar endothelium but not mural cells. In the PCAs that had been pretreated with XE 991 or Ba
2+
, nifedipine (1 μM) attenuated the asynchronous Ca
2+
transients but failed to restore their synchrony. In contrast, levcromakalim, an ATP-sensitive K
+
channel opener, restored the synchronous Ca
2+
transients. Thus, constitutively active K
v
7 and K
ir
channels appear to be involved in maintaining the relatively hyperpolarised membrane of mural cells. The hyperpolarised membrane prevents depolarisation-induced ‘premature’ Ca
2+
transients to ensure sufficient SR/ER Ca
2+
refilling that is required for regenerative Ca
2+
release resulting in synchronous Ca
2+
transients amongst the mural cells.</description><subject>Arterioles</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Calcium (intracellular)</subject><subject>Calcium channels</subject><subject>Calcium chloride</subject><subject>Calcium conductance</subject><subject>Calcium imaging</subject><subject>Calcium signalling</subject><subject>Cell Biology</subject><subject>Endothelium</subject><subject>Human Physiology</subject><subject>Immunoreactivity</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Nifedipine</subject><subject>Potassium channels</subject><subject>Potassium channels (calcium-gated)</subject><subject>Potassium channels (inwardly-rectifying)</subject><subject>Potassium channels (voltage-gated)</subject><subject>Potassium conductance</subject><subject>Receptors</subject><subject>Rectum</subject><subject>Signaling and Cell Physiology</subject><issn>0031-6768</issn><issn>1432-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1KxDAUhYMoOP68gKuAG0GqN0mbtEsZ_ENBEF2HNJNxKm0y5qaLeQGf24wVBBcuQsLNdw4nOYScMLhgAOoSAUpeFsCaAjhXZSF2yIyVghccmNglMwDBCqlkvU8OEN8BgJc1n5HP59A7Gpb04ZzalfHe9Ug7TwfT-ZRX599oWjmKG29XMfjNlsV1yJfehRHp3PBzmqLx2DmfvrVbfhij6al1fbbLimgSjc6mPMOxHUYbMB9NTC52OQAekb2l6dEd_-yH5PXm-mV-Vzw-3d7Prx4LK8o6FY3lYtEq0VYLJWTTiro2TCjRMOtUo6raCiMtq6SVrDVQSiHNogXHKzBcWSUOydnku47hY3SY9NDhNuX0Gs15_k6QAE1GT_-g72GMPqfLFDQMOFRlpvhE2RgQo1vqdewGEzeagd5Wo6dqdK5Gf1ejRRaJSYQZ9m8u_lr_o_oCPZmReQ</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Mitsui, Retsu</creator><creator>Hashitani, Hikaru</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20190701</creationdate><title>Role of K+ channels in maintaining the synchrony of spontaneous Ca2+ transients in the mural cells of rat rectal submucosal arterioles</title><author>Mitsui, Retsu ; Hashitani, Hikaru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-9c23db73b5d7369b388a137391ce79758c3a6c156c61ba04636adb0e250a27c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arterioles</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Calcium (intracellular)</topic><topic>Calcium channels</topic><topic>Calcium chloride</topic><topic>Calcium conductance</topic><topic>Calcium imaging</topic><topic>Calcium signalling</topic><topic>Cell Biology</topic><topic>Endothelium</topic><topic>Human Physiology</topic><topic>Immunoreactivity</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Nifedipine</topic><topic>Potassium channels</topic><topic>Potassium channels (calcium-gated)</topic><topic>Potassium channels (inwardly-rectifying)</topic><topic>Potassium channels (voltage-gated)</topic><topic>Potassium conductance</topic><topic>Receptors</topic><topic>Rectum</topic><topic>Signaling and Cell Physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitsui, Retsu</creatorcontrib><creatorcontrib>Hashitani, Hikaru</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Pflügers Archiv</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitsui, Retsu</au><au>Hashitani, Hikaru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of K+ channels in maintaining the synchrony of spontaneous Ca2+ transients in the mural cells of rat rectal submucosal arterioles</atitle><jtitle>Pflügers Archiv</jtitle><stitle>Pflugers Arch - Eur J Physiol</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>471</volume><issue>7</issue><spage>1025</spage><epage>1040</epage><pages>1025-1040</pages><issn>0031-6768</issn><eissn>1432-2013</eissn><abstract>Mural cells in precapillary arterioles (PCAs) generate spontaneous Ca
2+
transients primarily arising from the periodic release of Ca
2+
from sarcoendoplasmic reticulum (SR/ER). The Ca
2+
release induces Ca
2+
-activated chloride channel (CaCC)-dependent depolarisations that spread to neighbouring mural cells to develop the synchrony of their Ca
2+
transients. Here, we explored the roles of K
+
channels in maintaining the synchrony of spontaneous Ca
2+
transients. Intracellular Ca
2+
dynamics in mural cells were visualised by Cal-520 fluorescence Ca
2+
imaging in the submucosal PCAs of rat rectum. Increasing extracellular K
+
concentration ([K
+
]
o
) from 5.9 to 29.7 mM converted synchronous spontaneous Ca
2+
transients into asynchronous, high-frequency Ca
2+
transients. Similarly, the blockade of inward rectifier K
+
(K
ir
) channels with Ba
2+
(50 μM) or K
v
7 voltage-dependent K
+
(K
v
7) channels with XE 991 (10 μM) disrupted the synchrony of spontaneous Ca
2+
transients, while the blockers for large-, intermediate- or small-conductance Ca
2+
-activated K
+
channels had no effect. K
ir
2.1 immunoreactivity was detected in the arteriolar endothelium but not mural cells. In the PCAs that had been pretreated with XE 991 or Ba
2+
, nifedipine (1 μM) attenuated the asynchronous Ca
2+
transients but failed to restore their synchrony. In contrast, levcromakalim, an ATP-sensitive K
+
channel opener, restored the synchronous Ca
2+
transients. Thus, constitutively active K
v
7 and K
ir
channels appear to be involved in maintaining the relatively hyperpolarised membrane of mural cells. The hyperpolarised membrane prevents depolarisation-induced ‘premature’ Ca
2+
transients to ensure sufficient SR/ER Ca
2+
refilling that is required for regenerative Ca
2+
release resulting in synchronous Ca
2+
transients amongst the mural cells.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00424-019-02274-3</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-6768 |
ispartof | Pflügers Archiv, 2019-07, Vol.471 (7), p.1025-1040 |
issn | 0031-6768 1432-2013 |
language | eng |
recordid | cdi_proquest_miscellaneous_2210006009 |
source | SpringerLink Journals - AutoHoldings |
subjects | Arterioles Biomedical and Life Sciences Biomedicine Calcium (intracellular) Calcium channels Calcium chloride Calcium conductance Calcium imaging Calcium signalling Cell Biology Endothelium Human Physiology Immunoreactivity Molecular Medicine Neurosciences Nifedipine Potassium channels Potassium channels (calcium-gated) Potassium channels (inwardly-rectifying) Potassium channels (voltage-gated) Potassium conductance Receptors Rectum Signaling and Cell Physiology |
title | Role of K+ channels in maintaining the synchrony of spontaneous Ca2+ transients in the mural cells of rat rectal submucosal arterioles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20K+%20channels%20in%20maintaining%20the%20synchrony%20of%20spontaneous%20Ca2+%20transients%20in%20the%20mural%20cells%20of%20rat%20rectal%20submucosal%20arterioles&rft.jtitle=Pfl%C3%BCgers%20Archiv&rft.au=Mitsui,%20Retsu&rft.date=2019-07-01&rft.volume=471&rft.issue=7&rft.spage=1025&rft.epage=1040&rft.pages=1025-1040&rft.issn=0031-6768&rft.eissn=1432-2013&rft_id=info:doi/10.1007/s00424-019-02274-3&rft_dat=%3Cproquest_cross%3E2209102054%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2209102054&rft_id=info:pmid/&rfr_iscdi=true |