Role of K+ channels in maintaining the synchrony of spontaneous Ca2+ transients in the mural cells of rat rectal submucosal arterioles

Mural cells in precapillary arterioles (PCAs) generate spontaneous Ca 2+ transients primarily arising from the periodic release of Ca 2+ from sarcoendoplasmic reticulum (SR/ER). The Ca 2+ release induces Ca 2+ -activated chloride channel (CaCC)-dependent depolarisations that spread to neighbouring m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pflügers Archiv 2019-07, Vol.471 (7), p.1025-1040
Hauptverfasser: Mitsui, Retsu, Hashitani, Hikaru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1040
container_issue 7
container_start_page 1025
container_title Pflügers Archiv
container_volume 471
creator Mitsui, Retsu
Hashitani, Hikaru
description Mural cells in precapillary arterioles (PCAs) generate spontaneous Ca 2+ transients primarily arising from the periodic release of Ca 2+ from sarcoendoplasmic reticulum (SR/ER). The Ca 2+ release induces Ca 2+ -activated chloride channel (CaCC)-dependent depolarisations that spread to neighbouring mural cells to develop the synchrony of their Ca 2+ transients. Here, we explored the roles of K + channels in maintaining the synchrony of spontaneous Ca 2+ transients. Intracellular Ca 2+ dynamics in mural cells were visualised by Cal-520 fluorescence Ca 2+ imaging in the submucosal PCAs of rat rectum. Increasing extracellular K + concentration ([K + ] o ) from 5.9 to 29.7 mM converted synchronous spontaneous Ca 2+ transients into asynchronous, high-frequency Ca 2+ transients. Similarly, the blockade of inward rectifier K + (K ir ) channels with Ba 2+ (50 μM) or K v 7 voltage-dependent K + (K v 7) channels with XE 991 (10 μM) disrupted the synchrony of spontaneous Ca 2+ transients, while the blockers for large-, intermediate- or small-conductance Ca 2+ -activated K + channels had no effect. K ir 2.1 immunoreactivity was detected in the arteriolar endothelium but not mural cells. In the PCAs that had been pretreated with XE 991 or Ba 2+ , nifedipine (1 μM) attenuated the asynchronous Ca 2+ transients but failed to restore their synchrony. In contrast, levcromakalim, an ATP-sensitive K + channel opener, restored the synchronous Ca 2+ transients. Thus, constitutively active K v 7 and K ir channels appear to be involved in maintaining the relatively hyperpolarised membrane of mural cells. The hyperpolarised membrane prevents depolarisation-induced ‘premature’ Ca 2+ transients to ensure sufficient SR/ER Ca 2+ refilling that is required for regenerative Ca 2+ release resulting in synchronous Ca 2+ transients amongst the mural cells.
doi_str_mv 10.1007/s00424-019-02274-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2210006009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2209102054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-9c23db73b5d7369b388a137391ce79758c3a6c156c61ba04636adb0e250a27c73</originalsourceid><addsrcrecordid>eNp9kc1KxDAUhYMoOP68gKuAG0GqN0mbtEsZ_ENBEF2HNJNxKm0y5qaLeQGf24wVBBcuQsLNdw4nOYScMLhgAOoSAUpeFsCaAjhXZSF2yIyVghccmNglMwDBCqlkvU8OEN8BgJc1n5HP59A7Gpb04ZzalfHe9Ug7TwfT-ZRX599oWjmKG29XMfjNlsV1yJfehRHp3PBzmqLx2DmfvrVbfhij6al1fbbLimgSjc6mPMOxHUYbMB9NTC52OQAekb2l6dEd_-yH5PXm-mV-Vzw-3d7Prx4LK8o6FY3lYtEq0VYLJWTTiro2TCjRMOtUo6raCiMtq6SVrDVQSiHNogXHKzBcWSUOydnku47hY3SY9NDhNuX0Gs15_k6QAE1GT_-g72GMPqfLFDQMOFRlpvhE2RgQo1vqdewGEzeagd5Wo6dqdK5Gf1ejRRaJSYQZ9m8u_lr_o_oCPZmReQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209102054</pqid></control><display><type>article</type><title>Role of K+ channels in maintaining the synchrony of spontaneous Ca2+ transients in the mural cells of rat rectal submucosal arterioles</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mitsui, Retsu ; Hashitani, Hikaru</creator><creatorcontrib>Mitsui, Retsu ; Hashitani, Hikaru</creatorcontrib><description>Mural cells in precapillary arterioles (PCAs) generate spontaneous Ca 2+ transients primarily arising from the periodic release of Ca 2+ from sarcoendoplasmic reticulum (SR/ER). The Ca 2+ release induces Ca 2+ -activated chloride channel (CaCC)-dependent depolarisations that spread to neighbouring mural cells to develop the synchrony of their Ca 2+ transients. Here, we explored the roles of K + channels in maintaining the synchrony of spontaneous Ca 2+ transients. Intracellular Ca 2+ dynamics in mural cells were visualised by Cal-520 fluorescence Ca 2+ imaging in the submucosal PCAs of rat rectum. Increasing extracellular K + concentration ([K + ] o ) from 5.9 to 29.7 mM converted synchronous spontaneous Ca 2+ transients into asynchronous, high-frequency Ca 2+ transients. Similarly, the blockade of inward rectifier K + (K ir ) channels with Ba 2+ (50 μM) or K v 7 voltage-dependent K + (K v 7) channels with XE 991 (10 μM) disrupted the synchrony of spontaneous Ca 2+ transients, while the blockers for large-, intermediate- or small-conductance Ca 2+ -activated K + channels had no effect. K ir 2.1 immunoreactivity was detected in the arteriolar endothelium but not mural cells. In the PCAs that had been pretreated with XE 991 or Ba 2+ , nifedipine (1 μM) attenuated the asynchronous Ca 2+ transients but failed to restore their synchrony. In contrast, levcromakalim, an ATP-sensitive K + channel opener, restored the synchronous Ca 2+ transients. Thus, constitutively active K v 7 and K ir channels appear to be involved in maintaining the relatively hyperpolarised membrane of mural cells. The hyperpolarised membrane prevents depolarisation-induced ‘premature’ Ca 2+ transients to ensure sufficient SR/ER Ca 2+ refilling that is required for regenerative Ca 2+ release resulting in synchronous Ca 2+ transients amongst the mural cells.</description><identifier>ISSN: 0031-6768</identifier><identifier>EISSN: 1432-2013</identifier><identifier>DOI: 10.1007/s00424-019-02274-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Arterioles ; Biomedical and Life Sciences ; Biomedicine ; Calcium (intracellular) ; Calcium channels ; Calcium chloride ; Calcium conductance ; Calcium imaging ; Calcium signalling ; Cell Biology ; Endothelium ; Human Physiology ; Immunoreactivity ; Molecular Medicine ; Neurosciences ; Nifedipine ; Potassium channels ; Potassium channels (calcium-gated) ; Potassium channels (inwardly-rectifying) ; Potassium channels (voltage-gated) ; Potassium conductance ; Receptors ; Rectum ; Signaling and Cell Physiology</subject><ispartof>Pflügers Archiv, 2019-07, Vol.471 (7), p.1025-1040</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Pflügers Archiv - European Journal of Physiology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-9c23db73b5d7369b388a137391ce79758c3a6c156c61ba04636adb0e250a27c73</citedby><cites>FETCH-LOGICAL-c348t-9c23db73b5d7369b388a137391ce79758c3a6c156c61ba04636adb0e250a27c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00424-019-02274-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00424-019-02274-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Mitsui, Retsu</creatorcontrib><creatorcontrib>Hashitani, Hikaru</creatorcontrib><title>Role of K+ channels in maintaining the synchrony of spontaneous Ca2+ transients in the mural cells of rat rectal submucosal arterioles</title><title>Pflügers Archiv</title><addtitle>Pflugers Arch - Eur J Physiol</addtitle><description>Mural cells in precapillary arterioles (PCAs) generate spontaneous Ca 2+ transients primarily arising from the periodic release of Ca 2+ from sarcoendoplasmic reticulum (SR/ER). The Ca 2+ release induces Ca 2+ -activated chloride channel (CaCC)-dependent depolarisations that spread to neighbouring mural cells to develop the synchrony of their Ca 2+ transients. Here, we explored the roles of K + channels in maintaining the synchrony of spontaneous Ca 2+ transients. Intracellular Ca 2+ dynamics in mural cells were visualised by Cal-520 fluorescence Ca 2+ imaging in the submucosal PCAs of rat rectum. Increasing extracellular K + concentration ([K + ] o ) from 5.9 to 29.7 mM converted synchronous spontaneous Ca 2+ transients into asynchronous, high-frequency Ca 2+ transients. Similarly, the blockade of inward rectifier K + (K ir ) channels with Ba 2+ (50 μM) or K v 7 voltage-dependent K + (K v 7) channels with XE 991 (10 μM) disrupted the synchrony of spontaneous Ca 2+ transients, while the blockers for large-, intermediate- or small-conductance Ca 2+ -activated K + channels had no effect. K ir 2.1 immunoreactivity was detected in the arteriolar endothelium but not mural cells. In the PCAs that had been pretreated with XE 991 or Ba 2+ , nifedipine (1 μM) attenuated the asynchronous Ca 2+ transients but failed to restore their synchrony. In contrast, levcromakalim, an ATP-sensitive K + channel opener, restored the synchronous Ca 2+ transients. Thus, constitutively active K v 7 and K ir channels appear to be involved in maintaining the relatively hyperpolarised membrane of mural cells. The hyperpolarised membrane prevents depolarisation-induced ‘premature’ Ca 2+ transients to ensure sufficient SR/ER Ca 2+ refilling that is required for regenerative Ca 2+ release resulting in synchronous Ca 2+ transients amongst the mural cells.</description><subject>Arterioles</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Calcium (intracellular)</subject><subject>Calcium channels</subject><subject>Calcium chloride</subject><subject>Calcium conductance</subject><subject>Calcium imaging</subject><subject>Calcium signalling</subject><subject>Cell Biology</subject><subject>Endothelium</subject><subject>Human Physiology</subject><subject>Immunoreactivity</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Nifedipine</subject><subject>Potassium channels</subject><subject>Potassium channels (calcium-gated)</subject><subject>Potassium channels (inwardly-rectifying)</subject><subject>Potassium channels (voltage-gated)</subject><subject>Potassium conductance</subject><subject>Receptors</subject><subject>Rectum</subject><subject>Signaling and Cell Physiology</subject><issn>0031-6768</issn><issn>1432-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1KxDAUhYMoOP68gKuAG0GqN0mbtEsZ_ENBEF2HNJNxKm0y5qaLeQGf24wVBBcuQsLNdw4nOYScMLhgAOoSAUpeFsCaAjhXZSF2yIyVghccmNglMwDBCqlkvU8OEN8BgJc1n5HP59A7Gpb04ZzalfHe9Ug7TwfT-ZRX599oWjmKG29XMfjNlsV1yJfehRHp3PBzmqLx2DmfvrVbfhij6al1fbbLimgSjc6mPMOxHUYbMB9NTC52OQAekb2l6dEd_-yH5PXm-mV-Vzw-3d7Prx4LK8o6FY3lYtEq0VYLJWTTiro2TCjRMOtUo6raCiMtq6SVrDVQSiHNogXHKzBcWSUOydnku47hY3SY9NDhNuX0Gs15_k6QAE1GT_-g72GMPqfLFDQMOFRlpvhE2RgQo1vqdewGEzeagd5Wo6dqdK5Gf1ejRRaJSYQZ9m8u_lr_o_oCPZmReQ</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Mitsui, Retsu</creator><creator>Hashitani, Hikaru</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20190701</creationdate><title>Role of K+ channels in maintaining the synchrony of spontaneous Ca2+ transients in the mural cells of rat rectal submucosal arterioles</title><author>Mitsui, Retsu ; Hashitani, Hikaru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-9c23db73b5d7369b388a137391ce79758c3a6c156c61ba04636adb0e250a27c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arterioles</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Calcium (intracellular)</topic><topic>Calcium channels</topic><topic>Calcium chloride</topic><topic>Calcium conductance</topic><topic>Calcium imaging</topic><topic>Calcium signalling</topic><topic>Cell Biology</topic><topic>Endothelium</topic><topic>Human Physiology</topic><topic>Immunoreactivity</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Nifedipine</topic><topic>Potassium channels</topic><topic>Potassium channels (calcium-gated)</topic><topic>Potassium channels (inwardly-rectifying)</topic><topic>Potassium channels (voltage-gated)</topic><topic>Potassium conductance</topic><topic>Receptors</topic><topic>Rectum</topic><topic>Signaling and Cell Physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitsui, Retsu</creatorcontrib><creatorcontrib>Hashitani, Hikaru</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Pflügers Archiv</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitsui, Retsu</au><au>Hashitani, Hikaru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of K+ channels in maintaining the synchrony of spontaneous Ca2+ transients in the mural cells of rat rectal submucosal arterioles</atitle><jtitle>Pflügers Archiv</jtitle><stitle>Pflugers Arch - Eur J Physiol</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>471</volume><issue>7</issue><spage>1025</spage><epage>1040</epage><pages>1025-1040</pages><issn>0031-6768</issn><eissn>1432-2013</eissn><abstract>Mural cells in precapillary arterioles (PCAs) generate spontaneous Ca 2+ transients primarily arising from the periodic release of Ca 2+ from sarcoendoplasmic reticulum (SR/ER). The Ca 2+ release induces Ca 2+ -activated chloride channel (CaCC)-dependent depolarisations that spread to neighbouring mural cells to develop the synchrony of their Ca 2+ transients. Here, we explored the roles of K + channels in maintaining the synchrony of spontaneous Ca 2+ transients. Intracellular Ca 2+ dynamics in mural cells were visualised by Cal-520 fluorescence Ca 2+ imaging in the submucosal PCAs of rat rectum. Increasing extracellular K + concentration ([K + ] o ) from 5.9 to 29.7 mM converted synchronous spontaneous Ca 2+ transients into asynchronous, high-frequency Ca 2+ transients. Similarly, the blockade of inward rectifier K + (K ir ) channels with Ba 2+ (50 μM) or K v 7 voltage-dependent K + (K v 7) channels with XE 991 (10 μM) disrupted the synchrony of spontaneous Ca 2+ transients, while the blockers for large-, intermediate- or small-conductance Ca 2+ -activated K + channels had no effect. K ir 2.1 immunoreactivity was detected in the arteriolar endothelium but not mural cells. In the PCAs that had been pretreated with XE 991 or Ba 2+ , nifedipine (1 μM) attenuated the asynchronous Ca 2+ transients but failed to restore their synchrony. In contrast, levcromakalim, an ATP-sensitive K + channel opener, restored the synchronous Ca 2+ transients. Thus, constitutively active K v 7 and K ir channels appear to be involved in maintaining the relatively hyperpolarised membrane of mural cells. The hyperpolarised membrane prevents depolarisation-induced ‘premature’ Ca 2+ transients to ensure sufficient SR/ER Ca 2+ refilling that is required for regenerative Ca 2+ release resulting in synchronous Ca 2+ transients amongst the mural cells.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00424-019-02274-3</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-6768
ispartof Pflügers Archiv, 2019-07, Vol.471 (7), p.1025-1040
issn 0031-6768
1432-2013
language eng
recordid cdi_proquest_miscellaneous_2210006009
source SpringerLink Journals - AutoHoldings
subjects Arterioles
Biomedical and Life Sciences
Biomedicine
Calcium (intracellular)
Calcium channels
Calcium chloride
Calcium conductance
Calcium imaging
Calcium signalling
Cell Biology
Endothelium
Human Physiology
Immunoreactivity
Molecular Medicine
Neurosciences
Nifedipine
Potassium channels
Potassium channels (calcium-gated)
Potassium channels (inwardly-rectifying)
Potassium channels (voltage-gated)
Potassium conductance
Receptors
Rectum
Signaling and Cell Physiology
title Role of K+ channels in maintaining the synchrony of spontaneous Ca2+ transients in the mural cells of rat rectal submucosal arterioles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20K+%20channels%20in%20maintaining%20the%20synchrony%20of%20spontaneous%20Ca2+%20transients%20in%20the%20mural%20cells%20of%20rat%20rectal%20submucosal%20arterioles&rft.jtitle=Pfl%C3%BCgers%20Archiv&rft.au=Mitsui,%20Retsu&rft.date=2019-07-01&rft.volume=471&rft.issue=7&rft.spage=1025&rft.epage=1040&rft.pages=1025-1040&rft.issn=0031-6768&rft.eissn=1432-2013&rft_id=info:doi/10.1007/s00424-019-02274-3&rft_dat=%3Cproquest_cross%3E2209102054%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2209102054&rft_id=info:pmid/&rfr_iscdi=true