Functional CRISPR and shRNA Screens Identify Involvement of Mitochondrial Electron Transport in the Activation of Evofosfamide

Evofosfamide (TH-302) is a hypoxia-activated DNA-crosslinking prodrug currently in clinical development for cancer therapy. Oxygen-sensitive activation of evofosfamide depends on one-electron reduction, yet the reductases that catalyze this process in tumors are unknown. We used RNA sequencing, whol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmacology 2019-06, Vol.95 (6), p.638-651
Hauptverfasser: Hunter, Francis W., Devaux, Jules B.L., Meng, Fanying, Hong, Cho Rong, Khan, Aziza, Tsai, Peter, Ketela, Troy W., Sharma, Indumati, Kakadia, Purvi M., Marastoni, Stefano, Shalev, Zvi, Hickey, Anthony J.R., Print, Cristin G., Bohlander, Stefan K., Hart, Charles P., Wouters, Bradly G., Wilson, William R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 651
container_issue 6
container_start_page 638
container_title Molecular pharmacology
container_volume 95
creator Hunter, Francis W.
Devaux, Jules B.L.
Meng, Fanying
Hong, Cho Rong
Khan, Aziza
Tsai, Peter
Ketela, Troy W.
Sharma, Indumati
Kakadia, Purvi M.
Marastoni, Stefano
Shalev, Zvi
Hickey, Anthony J.R.
Print, Cristin G.
Bohlander, Stefan K.
Hart, Charles P.
Wouters, Bradly G.
Wilson, William R.
description Evofosfamide (TH-302) is a hypoxia-activated DNA-crosslinking prodrug currently in clinical development for cancer therapy. Oxygen-sensitive activation of evofosfamide depends on one-electron reduction, yet the reductases that catalyze this process in tumors are unknown. We used RNA sequencing, whole-genome CRISPR knockout, and reductase-focused short hairpin RNA screens to interrogate modifiers of evofosfamide activation in cancer cell lines. Involvement of mitochondrial electron transport in the activation of evofosfamide and the related nitroaromatic compounds EF5 and FSL-61 was investigated using 143B ρ0 (ρ zero) cells devoid of mitochondrial DNA and biochemical assays in UT-SCC-74B cells. The potency of evofosfamide in 30 genetically diverse cancer cell lines correlated with the expression of genes involved in mitochondrial electron transfer. A whole-genome CRISPR screen in KBM-7 cells identified the DNA damage-response factors SLX4IP, C10orf90 (FATS), and SLFN11, in addition to the key regulator of mitochondrial function, YME1L1, and several complex I constituents as modifiers of evofosfamide sensitivity. A reductase-focused shRNA screen in UT-SCC-74B cells similarly identified mitochondrial respiratory chain factors. Surprisingly, 143B ρ0 cells showed enhanced evofosfamide activation and sensitivity but had global transcriptional changes, including increased expression of nonmitochondrial flavoreductases. In UT-SCC-74B cells, evofosfamide oxidized cytochromes a, b, and c and inhibited respiration at complexes I, II, and IV without quenching reactive oxygen species production. Our results suggest that the mitochondrial electron transport chain contributes to evofosfamide activation and that predicting evofosfamide sensitivity in patients by measuring the expression of canonical bioreductive enzymes such as cytochrome P450 oxidoreductase is likely to be futile. ▪
doi_str_mv 10.1124/mol.118.115196
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2209601969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026895X24008915</els_id><sourcerecordid>2209601969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-134cb2a03b7dd019892d09e2fa54988dd8033ba01dfa08a71f9ba77184daba0f3</originalsourceid><addsrcrecordid>eNp1kM1rGzEQxUVpaJyPa45Fx1421eyHVzoa4zSGtAlOArkJrTTCCruSK60XcsnfXhmnvfUgNDP83hvmEXIF7BqgrL8Poc8Fz68BMf9EZtCUUDAA-ExmjJXzgovm5ZScpfTKGNQNZ1_IacVEKzhUM_J-s_d6dMGrni4368eHDVXe0LTd_FrQRx0RfaJrg3509o2u_RT6CYfc0mDpTzcGvQ3eRJflqx71GIOnT1H5tAtxpM7TcYt0kTdM6rDloFpNwYZk1eAMXpATq_qElx__OXm-WT0tb4u7-x_r5eKu0BWvxwKqWnelYlXXGsNAcFEaJrC0qqkF58ZwVlWdYmCsYly1YEWn2hZ4bVQe2-qcfDv67mL4vcc0ysEljX2vPIZ9kmXJxDwbz0VGr4-ojiGliFbuohtUfJPA5CFzmTPPBZfHzLPg64f3vhvQ_MP_hpwBfgQwXzg5jDJph16jcTFHJk1w__P-A29OkYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209601969</pqid></control><display><type>article</type><title>Functional CRISPR and shRNA Screens Identify Involvement of Mitochondrial Electron Transport in the Activation of Evofosfamide</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Hunter, Francis W. ; Devaux, Jules B.L. ; Meng, Fanying ; Hong, Cho Rong ; Khan, Aziza ; Tsai, Peter ; Ketela, Troy W. ; Sharma, Indumati ; Kakadia, Purvi M. ; Marastoni, Stefano ; Shalev, Zvi ; Hickey, Anthony J.R. ; Print, Cristin G. ; Bohlander, Stefan K. ; Hart, Charles P. ; Wouters, Bradly G. ; Wilson, William R.</creator><creatorcontrib>Hunter, Francis W. ; Devaux, Jules B.L. ; Meng, Fanying ; Hong, Cho Rong ; Khan, Aziza ; Tsai, Peter ; Ketela, Troy W. ; Sharma, Indumati ; Kakadia, Purvi M. ; Marastoni, Stefano ; Shalev, Zvi ; Hickey, Anthony J.R. ; Print, Cristin G. ; Bohlander, Stefan K. ; Hart, Charles P. ; Wouters, Bradly G. ; Wilson, William R.</creatorcontrib><description>Evofosfamide (TH-302) is a hypoxia-activated DNA-crosslinking prodrug currently in clinical development for cancer therapy. Oxygen-sensitive activation of evofosfamide depends on one-electron reduction, yet the reductases that catalyze this process in tumors are unknown. We used RNA sequencing, whole-genome CRISPR knockout, and reductase-focused short hairpin RNA screens to interrogate modifiers of evofosfamide activation in cancer cell lines. Involvement of mitochondrial electron transport in the activation of evofosfamide and the related nitroaromatic compounds EF5 and FSL-61 was investigated using 143B ρ0 (ρ zero) cells devoid of mitochondrial DNA and biochemical assays in UT-SCC-74B cells. The potency of evofosfamide in 30 genetically diverse cancer cell lines correlated with the expression of genes involved in mitochondrial electron transfer. A whole-genome CRISPR screen in KBM-7 cells identified the DNA damage-response factors SLX4IP, C10orf90 (FATS), and SLFN11, in addition to the key regulator of mitochondrial function, YME1L1, and several complex I constituents as modifiers of evofosfamide sensitivity. A reductase-focused shRNA screen in UT-SCC-74B cells similarly identified mitochondrial respiratory chain factors. Surprisingly, 143B ρ0 cells showed enhanced evofosfamide activation and sensitivity but had global transcriptional changes, including increased expression of nonmitochondrial flavoreductases. In UT-SCC-74B cells, evofosfamide oxidized cytochromes a, b, and c and inhibited respiration at complexes I, II, and IV without quenching reactive oxygen species production. Our results suggest that the mitochondrial electron transport chain contributes to evofosfamide activation and that predicting evofosfamide sensitivity in patients by measuring the expression of canonical bioreductive enzymes such as cytochrome P450 oxidoreductase is likely to be futile. ▪</description><identifier>ISSN: 0026-895X</identifier><identifier>EISSN: 1521-0111</identifier><identifier>DOI: 10.1124/mol.118.115196</identifier><identifier>PMID: 30979813</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cell Line, Tumor ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; CRISPR-Cas Systems ; Electron Transport - drug effects ; Gene Expression Regulation - drug effects ; Gene Regulatory Networks - drug effects ; HCT116 Cells ; Humans ; Mitochondria - drug effects ; Mitochondria - genetics ; Neoplasms - drug therapy ; Neoplasms - genetics ; Nitroimidazoles - pharmacology ; Phosphoramide Mustards - pharmacology ; Prodrugs ; RNA, Small Interfering - pharmacology ; Sequence Analysis, RNA - methods</subject><ispartof>Molecular pharmacology, 2019-06, Vol.95 (6), p.638-651</ispartof><rights>2019 American Society for Pharmacology and Experimental Therapeutics</rights><rights>Copyright © 2019 by The American Society for Pharmacology and Experimental Therapeutics.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-134cb2a03b7dd019892d09e2fa54988dd8033ba01dfa08a71f9ba77184daba0f3</citedby><cites>FETCH-LOGICAL-c384t-134cb2a03b7dd019892d09e2fa54988dd8033ba01dfa08a71f9ba77184daba0f3</cites><orcidid>0000-0002-9970-8679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30979813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hunter, Francis W.</creatorcontrib><creatorcontrib>Devaux, Jules B.L.</creatorcontrib><creatorcontrib>Meng, Fanying</creatorcontrib><creatorcontrib>Hong, Cho Rong</creatorcontrib><creatorcontrib>Khan, Aziza</creatorcontrib><creatorcontrib>Tsai, Peter</creatorcontrib><creatorcontrib>Ketela, Troy W.</creatorcontrib><creatorcontrib>Sharma, Indumati</creatorcontrib><creatorcontrib>Kakadia, Purvi M.</creatorcontrib><creatorcontrib>Marastoni, Stefano</creatorcontrib><creatorcontrib>Shalev, Zvi</creatorcontrib><creatorcontrib>Hickey, Anthony J.R.</creatorcontrib><creatorcontrib>Print, Cristin G.</creatorcontrib><creatorcontrib>Bohlander, Stefan K.</creatorcontrib><creatorcontrib>Hart, Charles P.</creatorcontrib><creatorcontrib>Wouters, Bradly G.</creatorcontrib><creatorcontrib>Wilson, William R.</creatorcontrib><title>Functional CRISPR and shRNA Screens Identify Involvement of Mitochondrial Electron Transport in the Activation of Evofosfamide</title><title>Molecular pharmacology</title><addtitle>Mol Pharmacol</addtitle><description>Evofosfamide (TH-302) is a hypoxia-activated DNA-crosslinking prodrug currently in clinical development for cancer therapy. Oxygen-sensitive activation of evofosfamide depends on one-electron reduction, yet the reductases that catalyze this process in tumors are unknown. We used RNA sequencing, whole-genome CRISPR knockout, and reductase-focused short hairpin RNA screens to interrogate modifiers of evofosfamide activation in cancer cell lines. Involvement of mitochondrial electron transport in the activation of evofosfamide and the related nitroaromatic compounds EF5 and FSL-61 was investigated using 143B ρ0 (ρ zero) cells devoid of mitochondrial DNA and biochemical assays in UT-SCC-74B cells. The potency of evofosfamide in 30 genetically diverse cancer cell lines correlated with the expression of genes involved in mitochondrial electron transfer. A whole-genome CRISPR screen in KBM-7 cells identified the DNA damage-response factors SLX4IP, C10orf90 (FATS), and SLFN11, in addition to the key regulator of mitochondrial function, YME1L1, and several complex I constituents as modifiers of evofosfamide sensitivity. A reductase-focused shRNA screen in UT-SCC-74B cells similarly identified mitochondrial respiratory chain factors. Surprisingly, 143B ρ0 cells showed enhanced evofosfamide activation and sensitivity but had global transcriptional changes, including increased expression of nonmitochondrial flavoreductases. In UT-SCC-74B cells, evofosfamide oxidized cytochromes a, b, and c and inhibited respiration at complexes I, II, and IV without quenching reactive oxygen species production. Our results suggest that the mitochondrial electron transport chain contributes to evofosfamide activation and that predicting evofosfamide sensitivity in patients by measuring the expression of canonical bioreductive enzymes such as cytochrome P450 oxidoreductase is likely to be futile. ▪</description><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>CRISPR-Cas Systems</subject><subject>Electron Transport - drug effects</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Regulatory Networks - drug effects</subject><subject>HCT116 Cells</subject><subject>Humans</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - genetics</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - genetics</subject><subject>Nitroimidazoles - pharmacology</subject><subject>Phosphoramide Mustards - pharmacology</subject><subject>Prodrugs</subject><subject>RNA, Small Interfering - pharmacology</subject><subject>Sequence Analysis, RNA - methods</subject><issn>0026-895X</issn><issn>1521-0111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1rGzEQxUVpaJyPa45Fx1421eyHVzoa4zSGtAlOArkJrTTCCruSK60XcsnfXhmnvfUgNDP83hvmEXIF7BqgrL8Poc8Fz68BMf9EZtCUUDAA-ExmjJXzgovm5ZScpfTKGNQNZ1_IacVEKzhUM_J-s_d6dMGrni4368eHDVXe0LTd_FrQRx0RfaJrg3509o2u_RT6CYfc0mDpTzcGvQ3eRJflqx71GIOnT1H5tAtxpM7TcYt0kTdM6rDloFpNwYZk1eAMXpATq_qElx__OXm-WT0tb4u7-x_r5eKu0BWvxwKqWnelYlXXGsNAcFEaJrC0qqkF58ZwVlWdYmCsYly1YEWn2hZ4bVQe2-qcfDv67mL4vcc0ysEljX2vPIZ9kmXJxDwbz0VGr4-ojiGliFbuohtUfJPA5CFzmTPPBZfHzLPg64f3vhvQ_MP_hpwBfgQwXzg5jDJph16jcTFHJk1w__P-A29OkYw</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Hunter, Francis W.</creator><creator>Devaux, Jules B.L.</creator><creator>Meng, Fanying</creator><creator>Hong, Cho Rong</creator><creator>Khan, Aziza</creator><creator>Tsai, Peter</creator><creator>Ketela, Troy W.</creator><creator>Sharma, Indumati</creator><creator>Kakadia, Purvi M.</creator><creator>Marastoni, Stefano</creator><creator>Shalev, Zvi</creator><creator>Hickey, Anthony J.R.</creator><creator>Print, Cristin G.</creator><creator>Bohlander, Stefan K.</creator><creator>Hart, Charles P.</creator><creator>Wouters, Bradly G.</creator><creator>Wilson, William R.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9970-8679</orcidid></search><sort><creationdate>20190601</creationdate><title>Functional CRISPR and shRNA Screens Identify Involvement of Mitochondrial Electron Transport in the Activation of Evofosfamide</title><author>Hunter, Francis W. ; Devaux, Jules B.L. ; Meng, Fanying ; Hong, Cho Rong ; Khan, Aziza ; Tsai, Peter ; Ketela, Troy W. ; Sharma, Indumati ; Kakadia, Purvi M. ; Marastoni, Stefano ; Shalev, Zvi ; Hickey, Anthony J.R. ; Print, Cristin G. ; Bohlander, Stefan K. ; Hart, Charles P. ; Wouters, Bradly G. ; Wilson, William R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-134cb2a03b7dd019892d09e2fa54988dd8033ba01dfa08a71f9ba77184daba0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>CRISPR-Cas Systems</topic><topic>Electron Transport - drug effects</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Regulatory Networks - drug effects</topic><topic>HCT116 Cells</topic><topic>Humans</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - genetics</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - genetics</topic><topic>Nitroimidazoles - pharmacology</topic><topic>Phosphoramide Mustards - pharmacology</topic><topic>Prodrugs</topic><topic>RNA, Small Interfering - pharmacology</topic><topic>Sequence Analysis, RNA - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunter, Francis W.</creatorcontrib><creatorcontrib>Devaux, Jules B.L.</creatorcontrib><creatorcontrib>Meng, Fanying</creatorcontrib><creatorcontrib>Hong, Cho Rong</creatorcontrib><creatorcontrib>Khan, Aziza</creatorcontrib><creatorcontrib>Tsai, Peter</creatorcontrib><creatorcontrib>Ketela, Troy W.</creatorcontrib><creatorcontrib>Sharma, Indumati</creatorcontrib><creatorcontrib>Kakadia, Purvi M.</creatorcontrib><creatorcontrib>Marastoni, Stefano</creatorcontrib><creatorcontrib>Shalev, Zvi</creatorcontrib><creatorcontrib>Hickey, Anthony J.R.</creatorcontrib><creatorcontrib>Print, Cristin G.</creatorcontrib><creatorcontrib>Bohlander, Stefan K.</creatorcontrib><creatorcontrib>Hart, Charles P.</creatorcontrib><creatorcontrib>Wouters, Bradly G.</creatorcontrib><creatorcontrib>Wilson, William R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunter, Francis W.</au><au>Devaux, Jules B.L.</au><au>Meng, Fanying</au><au>Hong, Cho Rong</au><au>Khan, Aziza</au><au>Tsai, Peter</au><au>Ketela, Troy W.</au><au>Sharma, Indumati</au><au>Kakadia, Purvi M.</au><au>Marastoni, Stefano</au><au>Shalev, Zvi</au><au>Hickey, Anthony J.R.</au><au>Print, Cristin G.</au><au>Bohlander, Stefan K.</au><au>Hart, Charles P.</au><au>Wouters, Bradly G.</au><au>Wilson, William R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional CRISPR and shRNA Screens Identify Involvement of Mitochondrial Electron Transport in the Activation of Evofosfamide</atitle><jtitle>Molecular pharmacology</jtitle><addtitle>Mol Pharmacol</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>95</volume><issue>6</issue><spage>638</spage><epage>651</epage><pages>638-651</pages><issn>0026-895X</issn><eissn>1521-0111</eissn><abstract>Evofosfamide (TH-302) is a hypoxia-activated DNA-crosslinking prodrug currently in clinical development for cancer therapy. Oxygen-sensitive activation of evofosfamide depends on one-electron reduction, yet the reductases that catalyze this process in tumors are unknown. We used RNA sequencing, whole-genome CRISPR knockout, and reductase-focused short hairpin RNA screens to interrogate modifiers of evofosfamide activation in cancer cell lines. Involvement of mitochondrial electron transport in the activation of evofosfamide and the related nitroaromatic compounds EF5 and FSL-61 was investigated using 143B ρ0 (ρ zero) cells devoid of mitochondrial DNA and biochemical assays in UT-SCC-74B cells. The potency of evofosfamide in 30 genetically diverse cancer cell lines correlated with the expression of genes involved in mitochondrial electron transfer. A whole-genome CRISPR screen in KBM-7 cells identified the DNA damage-response factors SLX4IP, C10orf90 (FATS), and SLFN11, in addition to the key regulator of mitochondrial function, YME1L1, and several complex I constituents as modifiers of evofosfamide sensitivity. A reductase-focused shRNA screen in UT-SCC-74B cells similarly identified mitochondrial respiratory chain factors. Surprisingly, 143B ρ0 cells showed enhanced evofosfamide activation and sensitivity but had global transcriptional changes, including increased expression of nonmitochondrial flavoreductases. In UT-SCC-74B cells, evofosfamide oxidized cytochromes a, b, and c and inhibited respiration at complexes I, II, and IV without quenching reactive oxygen species production. Our results suggest that the mitochondrial electron transport chain contributes to evofosfamide activation and that predicting evofosfamide sensitivity in patients by measuring the expression of canonical bioreductive enzymes such as cytochrome P450 oxidoreductase is likely to be futile. ▪</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30979813</pmid><doi>10.1124/mol.118.115196</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9970-8679</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-895X
ispartof Molecular pharmacology, 2019-06, Vol.95 (6), p.638-651
issn 0026-895X
1521-0111
language eng
recordid cdi_proquest_miscellaneous_2209601969
source MEDLINE; Full-Text Journals in Chemistry (Open access); Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Cell Line, Tumor
Cell Proliferation - drug effects
Cell Survival - drug effects
CRISPR-Cas Systems
Electron Transport - drug effects
Gene Expression Regulation - drug effects
Gene Regulatory Networks - drug effects
HCT116 Cells
Humans
Mitochondria - drug effects
Mitochondria - genetics
Neoplasms - drug therapy
Neoplasms - genetics
Nitroimidazoles - pharmacology
Phosphoramide Mustards - pharmacology
Prodrugs
RNA, Small Interfering - pharmacology
Sequence Analysis, RNA - methods
title Functional CRISPR and shRNA Screens Identify Involvement of Mitochondrial Electron Transport in the Activation of Evofosfamide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20CRISPR%20and%20shRNA%20Screens%20Identify%20Involvement%20of%20Mitochondrial%20Electron%20Transport%20in%20the%20Activation%20of%20Evofosfamide&rft.jtitle=Molecular%20pharmacology&rft.au=Hunter,%20Francis%20W.&rft.date=2019-06-01&rft.volume=95&rft.issue=6&rft.spage=638&rft.epage=651&rft.pages=638-651&rft.issn=0026-895X&rft.eissn=1521-0111&rft_id=info:doi/10.1124/mol.118.115196&rft_dat=%3Cproquest_cross%3E2209601969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2209601969&rft_id=info:pmid/30979813&rft_els_id=S0026895X24008915&rfr_iscdi=true