A Highly Efficient Self‐Healing Elastomer with Unprecedented Mechanical Properties
It is highly desirable, although very challenging, to develop self‐healable materials exhibiting both high efficiency in self‐healing and excellent mechanical properties at ambient conditions. Herein, a novel Cu(II)–dimethylglyoxime–urethane‐complex‐based polyurethane elastomer (Cu–DOU–CPU) with syn...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2019-06, Vol.31 (23), p.e1901402-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | e1901402 |
container_title | Advanced materials (Weinheim) |
container_volume | 31 |
creator | Zhang, Luzhi Liu, Zenghe Wu, Xueli Guan, Qingbao Chen, Shuo Sun, Lijie Guo, Yifan Wang, Shuliang Song, Jianchun Jeffries, Eric Meade He, Chuanglong Qing, Feng‐Ling Bao, Xiaoguang You, Zhengwei |
description | It is highly desirable, although very challenging, to develop self‐healable materials exhibiting both high efficiency in self‐healing and excellent mechanical properties at ambient conditions. Herein, a novel Cu(II)–dimethylglyoxime–urethane‐complex‐based polyurethane elastomer (Cu–DOU–CPU) with synergetic triple dynamic bonds is developed. Cu–DOU–CPU demonstrates the highest reported mechanical performance for self‐healing elastomers at room temperature, with a tensile strength and toughness up to 14.8 MPa and 87.0 MJ m−3, respectively. Meanwhile, the Cu–DOU–CPU spontaneously self‐heals at room temperature with an instant recovered tensile strength of 1.84 MPa and a continuously increased strength up to 13.8 MPa, surpassing the original strength of all other counterparts. Density functional theory calculations reveal that the coordination of Cu(II) plays a critical role in accelerating the reversible dissociation of dimethylglyoxime–urethane, which is important to the excellent performance of the self‐healing elastomer. Application of this technology is demonstrated by a self‐healable and stretchable circuit constructed from Cu–DOU–CPU.
A dimethylglyoxime–urethane (DOU)‐based polyurethane elastomer self‐heals immediately at room temperature and shows world‐record strength and toughness. Cu(II)DOU coordination bonds greatly strengthen the materials while enhancing the dynamics of the DOU bonds to facilitate self‐healing. This material design reconciles the contradictory properties of mechanical robustness and self‐healing efficiency, providing a powerful new strategy to create high‐performance self‐healing materials. |
doi_str_mv | 10.1002/adma.201901402 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2209599317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2233749288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-47df2a60326659de9d8a185228dd4ae4a29ba1c6c778821aaef9274175ce2e133</originalsourceid><addsrcrecordid>eNqF0EFPwjAYxvHGaATRq0ezxIuXYdt163okiGIC0UQ4L6V9ByXdhu0I4eZH8DP6SRwBMfHiqZdfn7z5I3RNcJdgTO-lLmSXYiIwYZieoDaJKQkZFvEpamMRxaFIWNpCF94vMcYiwck5akVYcB5z0kaTXjA084XdBoM8N8pAWQdvYPOvj88hSGvKeTCw0tdVAS7YmHoRTMuVAwW6kaCDMaiFLI2SNnh11QpcbcBforNcWg9Xh7eDpo-DSX8Yjl6envu9UagYwTRkXOdUJjiiSRILDUKnkqQxpanWTAKTVMwkUYniPE0pkRJyQTkjPFZAgURRB93td1euel-Dr7PCeAXWyhKqtc8obToIERHe0Ns_dFmtXdlc16go4kzQNG1Ud6-Uq7x3kGcrZwrpthnB2a53tuudHXs3H24Os-tZAfrIfwI3QOzBxljY_jOX9R7Gvd_xb9Iei-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233749288</pqid></control><display><type>article</type><title>A Highly Efficient Self‐Healing Elastomer with Unprecedented Mechanical Properties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Luzhi ; Liu, Zenghe ; Wu, Xueli ; Guan, Qingbao ; Chen, Shuo ; Sun, Lijie ; Guo, Yifan ; Wang, Shuliang ; Song, Jianchun ; Jeffries, Eric Meade ; He, Chuanglong ; Qing, Feng‐Ling ; Bao, Xiaoguang ; You, Zhengwei</creator><creatorcontrib>Zhang, Luzhi ; Liu, Zenghe ; Wu, Xueli ; Guan, Qingbao ; Chen, Shuo ; Sun, Lijie ; Guo, Yifan ; Wang, Shuliang ; Song, Jianchun ; Jeffries, Eric Meade ; He, Chuanglong ; Qing, Feng‐Ling ; Bao, Xiaoguang ; You, Zhengwei</creatorcontrib><description>It is highly desirable, although very challenging, to develop self‐healable materials exhibiting both high efficiency in self‐healing and excellent mechanical properties at ambient conditions. Herein, a novel Cu(II)–dimethylglyoxime–urethane‐complex‐based polyurethane elastomer (Cu–DOU–CPU) with synergetic triple dynamic bonds is developed. Cu–DOU–CPU demonstrates the highest reported mechanical performance for self‐healing elastomers at room temperature, with a tensile strength and toughness up to 14.8 MPa and 87.0 MJ m−3, respectively. Meanwhile, the Cu–DOU–CPU spontaneously self‐heals at room temperature with an instant recovered tensile strength of 1.84 MPa and a continuously increased strength up to 13.8 MPa, surpassing the original strength of all other counterparts. Density functional theory calculations reveal that the coordination of Cu(II) plays a critical role in accelerating the reversible dissociation of dimethylglyoxime–urethane, which is important to the excellent performance of the self‐healing elastomer. Application of this technology is demonstrated by a self‐healable and stretchable circuit constructed from Cu–DOU–CPU.
A dimethylglyoxime–urethane (DOU)‐based polyurethane elastomer self‐heals immediately at room temperature and shows world‐record strength and toughness. Cu(II)DOU coordination bonds greatly strengthen the materials while enhancing the dynamics of the DOU bonds to facilitate self‐healing. This material design reconciles the contradictory properties of mechanical robustness and self‐healing efficiency, providing a powerful new strategy to create high‐performance self‐healing materials.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201901402</identifier><identifier>PMID: 30977571</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Density functional theory ; dynamic covalent bonds ; Elastomers ; Healing ; Mechanical properties ; metal coordination ; polyurethane ; Polyurethane resins ; self‐healing ; Tensile strength</subject><ispartof>Advanced materials (Weinheim), 2019-06, Vol.31 (23), p.e1901402-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-47df2a60326659de9d8a185228dd4ae4a29ba1c6c778821aaef9274175ce2e133</citedby><cites>FETCH-LOGICAL-c4102-47df2a60326659de9d8a185228dd4ae4a29ba1c6c778821aaef9274175ce2e133</cites><orcidid>0000-0003-1038-1321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201901402$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201901402$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30977571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Luzhi</creatorcontrib><creatorcontrib>Liu, Zenghe</creatorcontrib><creatorcontrib>Wu, Xueli</creatorcontrib><creatorcontrib>Guan, Qingbao</creatorcontrib><creatorcontrib>Chen, Shuo</creatorcontrib><creatorcontrib>Sun, Lijie</creatorcontrib><creatorcontrib>Guo, Yifan</creatorcontrib><creatorcontrib>Wang, Shuliang</creatorcontrib><creatorcontrib>Song, Jianchun</creatorcontrib><creatorcontrib>Jeffries, Eric Meade</creatorcontrib><creatorcontrib>He, Chuanglong</creatorcontrib><creatorcontrib>Qing, Feng‐Ling</creatorcontrib><creatorcontrib>Bao, Xiaoguang</creatorcontrib><creatorcontrib>You, Zhengwei</creatorcontrib><title>A Highly Efficient Self‐Healing Elastomer with Unprecedented Mechanical Properties</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>It is highly desirable, although very challenging, to develop self‐healable materials exhibiting both high efficiency in self‐healing and excellent mechanical properties at ambient conditions. Herein, a novel Cu(II)–dimethylglyoxime–urethane‐complex‐based polyurethane elastomer (Cu–DOU–CPU) with synergetic triple dynamic bonds is developed. Cu–DOU–CPU demonstrates the highest reported mechanical performance for self‐healing elastomers at room temperature, with a tensile strength and toughness up to 14.8 MPa and 87.0 MJ m−3, respectively. Meanwhile, the Cu–DOU–CPU spontaneously self‐heals at room temperature with an instant recovered tensile strength of 1.84 MPa and a continuously increased strength up to 13.8 MPa, surpassing the original strength of all other counterparts. Density functional theory calculations reveal that the coordination of Cu(II) plays a critical role in accelerating the reversible dissociation of dimethylglyoxime–urethane, which is important to the excellent performance of the self‐healing elastomer. Application of this technology is demonstrated by a self‐healable and stretchable circuit constructed from Cu–DOU–CPU.
A dimethylglyoxime–urethane (DOU)‐based polyurethane elastomer self‐heals immediately at room temperature and shows world‐record strength and toughness. Cu(II)DOU coordination bonds greatly strengthen the materials while enhancing the dynamics of the DOU bonds to facilitate self‐healing. This material design reconciles the contradictory properties of mechanical robustness and self‐healing efficiency, providing a powerful new strategy to create high‐performance self‐healing materials.</description><subject>Density functional theory</subject><subject>dynamic covalent bonds</subject><subject>Elastomers</subject><subject>Healing</subject><subject>Mechanical properties</subject><subject>metal coordination</subject><subject>polyurethane</subject><subject>Polyurethane resins</subject><subject>self‐healing</subject><subject>Tensile strength</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqF0EFPwjAYxvHGaATRq0ezxIuXYdt163okiGIC0UQ4L6V9ByXdhu0I4eZH8DP6SRwBMfHiqZdfn7z5I3RNcJdgTO-lLmSXYiIwYZieoDaJKQkZFvEpamMRxaFIWNpCF94vMcYiwck5akVYcB5z0kaTXjA084XdBoM8N8pAWQdvYPOvj88hSGvKeTCw0tdVAS7YmHoRTMuVAwW6kaCDMaiFLI2SNnh11QpcbcBforNcWg9Xh7eDpo-DSX8Yjl6envu9UagYwTRkXOdUJjiiSRILDUKnkqQxpanWTAKTVMwkUYniPE0pkRJyQTkjPFZAgURRB93td1euel-Dr7PCeAXWyhKqtc8obToIERHe0Ns_dFmtXdlc16go4kzQNG1Ud6-Uq7x3kGcrZwrpthnB2a53tuudHXs3H24Os-tZAfrIfwI3QOzBxljY_jOX9R7Gvd_xb9Iei-4</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Zhang, Luzhi</creator><creator>Liu, Zenghe</creator><creator>Wu, Xueli</creator><creator>Guan, Qingbao</creator><creator>Chen, Shuo</creator><creator>Sun, Lijie</creator><creator>Guo, Yifan</creator><creator>Wang, Shuliang</creator><creator>Song, Jianchun</creator><creator>Jeffries, Eric Meade</creator><creator>He, Chuanglong</creator><creator>Qing, Feng‐Ling</creator><creator>Bao, Xiaoguang</creator><creator>You, Zhengwei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1038-1321</orcidid></search><sort><creationdate>20190601</creationdate><title>A Highly Efficient Self‐Healing Elastomer with Unprecedented Mechanical Properties</title><author>Zhang, Luzhi ; Liu, Zenghe ; Wu, Xueli ; Guan, Qingbao ; Chen, Shuo ; Sun, Lijie ; Guo, Yifan ; Wang, Shuliang ; Song, Jianchun ; Jeffries, Eric Meade ; He, Chuanglong ; Qing, Feng‐Ling ; Bao, Xiaoguang ; You, Zhengwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-47df2a60326659de9d8a185228dd4ae4a29ba1c6c778821aaef9274175ce2e133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Density functional theory</topic><topic>dynamic covalent bonds</topic><topic>Elastomers</topic><topic>Healing</topic><topic>Mechanical properties</topic><topic>metal coordination</topic><topic>polyurethane</topic><topic>Polyurethane resins</topic><topic>self‐healing</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Luzhi</creatorcontrib><creatorcontrib>Liu, Zenghe</creatorcontrib><creatorcontrib>Wu, Xueli</creatorcontrib><creatorcontrib>Guan, Qingbao</creatorcontrib><creatorcontrib>Chen, Shuo</creatorcontrib><creatorcontrib>Sun, Lijie</creatorcontrib><creatorcontrib>Guo, Yifan</creatorcontrib><creatorcontrib>Wang, Shuliang</creatorcontrib><creatorcontrib>Song, Jianchun</creatorcontrib><creatorcontrib>Jeffries, Eric Meade</creatorcontrib><creatorcontrib>He, Chuanglong</creatorcontrib><creatorcontrib>Qing, Feng‐Ling</creatorcontrib><creatorcontrib>Bao, Xiaoguang</creatorcontrib><creatorcontrib>You, Zhengwei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Luzhi</au><au>Liu, Zenghe</au><au>Wu, Xueli</au><au>Guan, Qingbao</au><au>Chen, Shuo</au><au>Sun, Lijie</au><au>Guo, Yifan</au><au>Wang, Shuliang</au><au>Song, Jianchun</au><au>Jeffries, Eric Meade</au><au>He, Chuanglong</au><au>Qing, Feng‐Ling</au><au>Bao, Xiaoguang</au><au>You, Zhengwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Highly Efficient Self‐Healing Elastomer with Unprecedented Mechanical Properties</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>31</volume><issue>23</issue><spage>e1901402</spage><epage>n/a</epage><pages>e1901402-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>It is highly desirable, although very challenging, to develop self‐healable materials exhibiting both high efficiency in self‐healing and excellent mechanical properties at ambient conditions. Herein, a novel Cu(II)–dimethylglyoxime–urethane‐complex‐based polyurethane elastomer (Cu–DOU–CPU) with synergetic triple dynamic bonds is developed. Cu–DOU–CPU demonstrates the highest reported mechanical performance for self‐healing elastomers at room temperature, with a tensile strength and toughness up to 14.8 MPa and 87.0 MJ m−3, respectively. Meanwhile, the Cu–DOU–CPU spontaneously self‐heals at room temperature with an instant recovered tensile strength of 1.84 MPa and a continuously increased strength up to 13.8 MPa, surpassing the original strength of all other counterparts. Density functional theory calculations reveal that the coordination of Cu(II) plays a critical role in accelerating the reversible dissociation of dimethylglyoxime–urethane, which is important to the excellent performance of the self‐healing elastomer. Application of this technology is demonstrated by a self‐healable and stretchable circuit constructed from Cu–DOU–CPU.
A dimethylglyoxime–urethane (DOU)‐based polyurethane elastomer self‐heals immediately at room temperature and shows world‐record strength and toughness. Cu(II)DOU coordination bonds greatly strengthen the materials while enhancing the dynamics of the DOU bonds to facilitate self‐healing. This material design reconciles the contradictory properties of mechanical robustness and self‐healing efficiency, providing a powerful new strategy to create high‐performance self‐healing materials.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30977571</pmid><doi>10.1002/adma.201901402</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1038-1321</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2019-06, Vol.31 (23), p.e1901402-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2209599317 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Density functional theory dynamic covalent bonds Elastomers Healing Mechanical properties metal coordination polyurethane Polyurethane resins self‐healing Tensile strength |
title | A Highly Efficient Self‐Healing Elastomer with Unprecedented Mechanical Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A28%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Highly%20Efficient%20Self%E2%80%90Healing%20Elastomer%20with%20Unprecedented%20Mechanical%20Properties&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Luzhi&rft.date=2019-06-01&rft.volume=31&rft.issue=23&rft.spage=e1901402&rft.epage=n/a&rft.pages=e1901402-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201901402&rft_dat=%3Cproquest_cross%3E2233749288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2233749288&rft_id=info:pmid/30977571&rfr_iscdi=true |