Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides
Plants and animals recognize conserved flagellin fragments as a signature of bacterial invasion. These immunogenic elicitor peptides are embedded in the flagellin polymer and require hydrolytic release before they can activate cell surface receptors. Although much of flagellin signaling is understoo...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2019-04, Vol.364 (6436), p.145-145 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 145 |
---|---|
container_issue | 6436 |
container_start_page | 145 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 364 |
creator | Buscaill, Pierre Chandrasekar, Balakumaran Sanguankiattichai, Nattapong Kourelis, Jiorgos Kaschani, Farnusch Thomas, Emma L. Morimoto, Kyoko Kaiser, Markus Preston, Gail M. Ichinose, Yuki van der Hoorn, Renier A. L. |
description | Plants and animals recognize conserved flagellin fragments as a signature of bacterial invasion. These immunogenic elicitor peptides are embedded in the flagellin polymer and require hydrolytic release before they can activate cell surface receptors. Although much of flagellin signaling is understood, little is known about the release of immunogenic fragments. We discovered that plant-secreted β-galactosidase 1 (BGAL1) of
promotes hydrolytic elicitor release and acts in immunity against pathogenic
strains only when they carry a terminal modified viosamine (mVio) in the flagellin
-glycan. In counter defense,
pathovars evade host immunity by using BGAL1-resistant
-glycans or by producing a BGAL1 inhibitor. Polymorphic glycans on flagella are common to plant and animal pathogenic bacteria and represent an important determinant of host immunity to bacterial pathogens. |
doi_str_mv | 10.1126/science.aav0748 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2209598713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26649237</jstor_id><sourcerecordid>26649237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-ddb6871e33324cf3f50bda0329698132ace33d46008d0fb24df716749ba349d73</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EoqUwM4EisbCk9SMvj6iCglSJBebg-NG6cuJgJ0j59zhq6MB0ZZ_vnnvvAeAWwSVCOFt5rmXD5ZKxH5gnxRmYI0jTmGJIzsEcQpLFBczTGbjy_gBh0Ci5BDMCaZ4WaTEHXxszcOu1YF5GrBHRLrxZE7XWDLV17V77OuK26Zw10X4QoQyd5pGTRo4tVkW6rvvG7mQTvpVhO2mMDgay7bSQ_hpcKGa8vJnqAny-PH-sX-Pt--Zt_bSNeUJRFwtRZUWOJCEEJ1wRlcJKMEgwzWiBCGY8SCLJICwEVBVOhMpRlie0YiShIicL8Hj0bZ397qXvylp7HnZhjbS9LzEejw8jSEAf_qEH27smbDdSBSZhHg7U6khxZ713UpWt0zVzQ4lgOYZfTuGXU_ih437y7ataihP_l3YA7o7AwXfWnXScZQnFJCe_GlqNBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2208231322</pqid></control><display><type>article</type><title>Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides</title><source>MEDLINE</source><source>Science Magazine</source><creator>Buscaill, Pierre ; Chandrasekar, Balakumaran ; Sanguankiattichai, Nattapong ; Kourelis, Jiorgos ; Kaschani, Farnusch ; Thomas, Emma L. ; Morimoto, Kyoko ; Kaiser, Markus ; Preston, Gail M. ; Ichinose, Yuki ; van der Hoorn, Renier A. L.</creator><creatorcontrib>Buscaill, Pierre ; Chandrasekar, Balakumaran ; Sanguankiattichai, Nattapong ; Kourelis, Jiorgos ; Kaschani, Farnusch ; Thomas, Emma L. ; Morimoto, Kyoko ; Kaiser, Markus ; Preston, Gail M. ; Ichinose, Yuki ; van der Hoorn, Renier A. L.</creatorcontrib><description>Plants and animals recognize conserved flagellin fragments as a signature of bacterial invasion. These immunogenic elicitor peptides are embedded in the flagellin polymer and require hydrolytic release before they can activate cell surface receptors. Although much of flagellin signaling is understood, little is known about the release of immunogenic fragments. We discovered that plant-secreted β-galactosidase 1 (BGAL1) of
promotes hydrolytic elicitor release and acts in immunity against pathogenic
strains only when they carry a terminal modified viosamine (mVio) in the flagellin
-glycan. In counter defense,
pathovars evade host immunity by using BGAL1-resistant
-glycans or by producing a BGAL1 inhibitor. Polymorphic glycans on flagella are common to plant and animal pathogenic bacteria and represent an important determinant of host immunity to bacterial pathogens.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aav0748</identifier><identifier>PMID: 30975858</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Angiosperms ; Animals ; Apoplast ; Bacteria ; beta-Galactosidase - genetics ; beta-Galactosidase - metabolism ; Buried structures ; Cell surface ; Computational fluid dynamics ; DNA probes ; Flagella ; Flagellin ; Flagellin - immunology ; Flagellin - metabolism ; Flowers & plants ; Fluids ; Fragmentation ; Fragments ; Galactosidase ; Gene polymorphism ; Genome editing ; Genomes ; Glycan ; Glycosidases ; Glycosylation ; Host-Pathogen Interactions - immunology ; Hydrolysis ; Immune response ; Immune system ; Immunity ; Immunogenicity ; Infections ; Microorganisms ; Mutants ; Nicotiana - enzymology ; Nicotiana - genetics ; Nicotiana - immunology ; Nicotiana - microbiology ; Nicotiana benthamiana ; Organic chemistry ; Pathogens ; Peptides ; Plant immunity ; Plant tissues ; Polymers ; Polymers - metabolism ; Polymorphism ; Polysaccharides ; Polysaccharides - chemistry ; Polysaccharides - metabolism ; Protease inhibitors ; Proteinase inhibitors ; Proteins ; Pseudomonas syringae ; Pseudomonas syringae - immunology ; Pseudomonas syringae - pathogenicity ; Reactive oxygen species ; Recognition ; Regulators ; RESEARCH ARTICLE SUMMARY ; Rhamnose ; Shielding ; Strains (organisms) ; Thermal stability ; Tomatoes ; Virulence ; β-Galactosidase</subject><ispartof>Science (American Association for the Advancement of Science), 2019-04, Vol.364 (6436), p.145-145</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-ddb6871e33324cf3f50bda0329698132ace33d46008d0fb24df716749ba349d73</citedby><cites>FETCH-LOGICAL-c491t-ddb6871e33324cf3f50bda0329698132ace33d46008d0fb24df716749ba349d73</cites><orcidid>0000-0001-7062-6568 ; 0000-0003-3882-4438 ; 0000-0002-9007-1333 ; 0000-0003-4756-1203 ; 0000-0003-4408-8262 ; 0000-0002-6540-8520 ; 0000-0002-7767-7912 ; 0000-0001-5696-6777 ; 0000-0002-8113-9201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30975858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buscaill, Pierre</creatorcontrib><creatorcontrib>Chandrasekar, Balakumaran</creatorcontrib><creatorcontrib>Sanguankiattichai, Nattapong</creatorcontrib><creatorcontrib>Kourelis, Jiorgos</creatorcontrib><creatorcontrib>Kaschani, Farnusch</creatorcontrib><creatorcontrib>Thomas, Emma L.</creatorcontrib><creatorcontrib>Morimoto, Kyoko</creatorcontrib><creatorcontrib>Kaiser, Markus</creatorcontrib><creatorcontrib>Preston, Gail M.</creatorcontrib><creatorcontrib>Ichinose, Yuki</creatorcontrib><creatorcontrib>van der Hoorn, Renier A. L.</creatorcontrib><title>Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Plants and animals recognize conserved flagellin fragments as a signature of bacterial invasion. These immunogenic elicitor peptides are embedded in the flagellin polymer and require hydrolytic release before they can activate cell surface receptors. Although much of flagellin signaling is understood, little is known about the release of immunogenic fragments. We discovered that plant-secreted β-galactosidase 1 (BGAL1) of
promotes hydrolytic elicitor release and acts in immunity against pathogenic
strains only when they carry a terminal modified viosamine (mVio) in the flagellin
-glycan. In counter defense,
pathovars evade host immunity by using BGAL1-resistant
-glycans or by producing a BGAL1 inhibitor. Polymorphic glycans on flagella are common to plant and animal pathogenic bacteria and represent an important determinant of host immunity to bacterial pathogens.</description><subject>Angiosperms</subject><subject>Animals</subject><subject>Apoplast</subject><subject>Bacteria</subject><subject>beta-Galactosidase - genetics</subject><subject>beta-Galactosidase - metabolism</subject><subject>Buried structures</subject><subject>Cell surface</subject><subject>Computational fluid dynamics</subject><subject>DNA probes</subject><subject>Flagella</subject><subject>Flagellin</subject><subject>Flagellin - immunology</subject><subject>Flagellin - metabolism</subject><subject>Flowers & plants</subject><subject>Fluids</subject><subject>Fragmentation</subject><subject>Fragments</subject><subject>Galactosidase</subject><subject>Gene polymorphism</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Glycan</subject><subject>Glycosidases</subject><subject>Glycosylation</subject><subject>Host-Pathogen Interactions - immunology</subject><subject>Hydrolysis</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunity</subject><subject>Immunogenicity</subject><subject>Infections</subject><subject>Microorganisms</subject><subject>Mutants</subject><subject>Nicotiana - enzymology</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - immunology</subject><subject>Nicotiana - microbiology</subject><subject>Nicotiana benthamiana</subject><subject>Organic chemistry</subject><subject>Pathogens</subject><subject>Peptides</subject><subject>Plant immunity</subject><subject>Plant tissues</subject><subject>Polymers</subject><subject>Polymers - metabolism</subject><subject>Polymorphism</subject><subject>Polysaccharides</subject><subject>Polysaccharides - chemistry</subject><subject>Polysaccharides - metabolism</subject><subject>Protease inhibitors</subject><subject>Proteinase inhibitors</subject><subject>Proteins</subject><subject>Pseudomonas syringae</subject><subject>Pseudomonas syringae - immunology</subject><subject>Pseudomonas syringae - pathogenicity</subject><subject>Reactive oxygen species</subject><subject>Recognition</subject><subject>Regulators</subject><subject>RESEARCH ARTICLE SUMMARY</subject><subject>Rhamnose</subject><subject>Shielding</subject><subject>Strains (organisms)</subject><subject>Thermal stability</subject><subject>Tomatoes</subject><subject>Virulence</subject><subject>β-Galactosidase</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkDtPwzAUhS0EoqUwM4EisbCk9SMvj6iCglSJBebg-NG6cuJgJ0j59zhq6MB0ZZ_vnnvvAeAWwSVCOFt5rmXD5ZKxH5gnxRmYI0jTmGJIzsEcQpLFBczTGbjy_gBh0Ci5BDMCaZ4WaTEHXxszcOu1YF5GrBHRLrxZE7XWDLV17V77OuK26Zw10X4QoQyd5pGTRo4tVkW6rvvG7mQTvpVhO2mMDgay7bSQ_hpcKGa8vJnqAny-PH-sX-Pt--Zt_bSNeUJRFwtRZUWOJCEEJ1wRlcJKMEgwzWiBCGY8SCLJICwEVBVOhMpRlie0YiShIicL8Hj0bZ397qXvylp7HnZhjbS9LzEejw8jSEAf_qEH27smbDdSBSZhHg7U6khxZ713UpWt0zVzQ4lgOYZfTuGXU_ih437y7ataihP_l3YA7o7AwXfWnXScZQnFJCe_GlqNBQ</recordid><startdate>20190412</startdate><enddate>20190412</enddate><creator>Buscaill, Pierre</creator><creator>Chandrasekar, Balakumaran</creator><creator>Sanguankiattichai, Nattapong</creator><creator>Kourelis, Jiorgos</creator><creator>Kaschani, Farnusch</creator><creator>Thomas, Emma L.</creator><creator>Morimoto, Kyoko</creator><creator>Kaiser, Markus</creator><creator>Preston, Gail M.</creator><creator>Ichinose, Yuki</creator><creator>van der Hoorn, Renier A. L.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7062-6568</orcidid><orcidid>https://orcid.org/0000-0003-3882-4438</orcidid><orcidid>https://orcid.org/0000-0002-9007-1333</orcidid><orcidid>https://orcid.org/0000-0003-4756-1203</orcidid><orcidid>https://orcid.org/0000-0003-4408-8262</orcidid><orcidid>https://orcid.org/0000-0002-6540-8520</orcidid><orcidid>https://orcid.org/0000-0002-7767-7912</orcidid><orcidid>https://orcid.org/0000-0001-5696-6777</orcidid><orcidid>https://orcid.org/0000-0002-8113-9201</orcidid></search><sort><creationdate>20190412</creationdate><title>Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides</title><author>Buscaill, Pierre ; Chandrasekar, Balakumaran ; Sanguankiattichai, Nattapong ; Kourelis, Jiorgos ; Kaschani, Farnusch ; Thomas, Emma L. ; Morimoto, Kyoko ; Kaiser, Markus ; Preston, Gail M. ; Ichinose, Yuki ; van der Hoorn, Renier A. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-ddb6871e33324cf3f50bda0329698132ace33d46008d0fb24df716749ba349d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Angiosperms</topic><topic>Animals</topic><topic>Apoplast</topic><topic>Bacteria</topic><topic>beta-Galactosidase - genetics</topic><topic>beta-Galactosidase - metabolism</topic><topic>Buried structures</topic><topic>Cell surface</topic><topic>Computational fluid dynamics</topic><topic>DNA probes</topic><topic>Flagella</topic><topic>Flagellin</topic><topic>Flagellin - immunology</topic><topic>Flagellin - metabolism</topic><topic>Flowers & plants</topic><topic>Fluids</topic><topic>Fragmentation</topic><topic>Fragments</topic><topic>Galactosidase</topic><topic>Gene polymorphism</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Glycan</topic><topic>Glycosidases</topic><topic>Glycosylation</topic><topic>Host-Pathogen Interactions - immunology</topic><topic>Hydrolysis</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunity</topic><topic>Immunogenicity</topic><topic>Infections</topic><topic>Microorganisms</topic><topic>Mutants</topic><topic>Nicotiana - enzymology</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - immunology</topic><topic>Nicotiana - microbiology</topic><topic>Nicotiana benthamiana</topic><topic>Organic chemistry</topic><topic>Pathogens</topic><topic>Peptides</topic><topic>Plant immunity</topic><topic>Plant tissues</topic><topic>Polymers</topic><topic>Polymers - metabolism</topic><topic>Polymorphism</topic><topic>Polysaccharides</topic><topic>Polysaccharides - chemistry</topic><topic>Polysaccharides - metabolism</topic><topic>Protease inhibitors</topic><topic>Proteinase inhibitors</topic><topic>Proteins</topic><topic>Pseudomonas syringae</topic><topic>Pseudomonas syringae - immunology</topic><topic>Pseudomonas syringae - pathogenicity</topic><topic>Reactive oxygen species</topic><topic>Recognition</topic><topic>Regulators</topic><topic>RESEARCH ARTICLE SUMMARY</topic><topic>Rhamnose</topic><topic>Shielding</topic><topic>Strains (organisms)</topic><topic>Thermal stability</topic><topic>Tomatoes</topic><topic>Virulence</topic><topic>β-Galactosidase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buscaill, Pierre</creatorcontrib><creatorcontrib>Chandrasekar, Balakumaran</creatorcontrib><creatorcontrib>Sanguankiattichai, Nattapong</creatorcontrib><creatorcontrib>Kourelis, Jiorgos</creatorcontrib><creatorcontrib>Kaschani, Farnusch</creatorcontrib><creatorcontrib>Thomas, Emma L.</creatorcontrib><creatorcontrib>Morimoto, Kyoko</creatorcontrib><creatorcontrib>Kaiser, Markus</creatorcontrib><creatorcontrib>Preston, Gail M.</creatorcontrib><creatorcontrib>Ichinose, Yuki</creatorcontrib><creatorcontrib>van der Hoorn, Renier A. L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buscaill, Pierre</au><au>Chandrasekar, Balakumaran</au><au>Sanguankiattichai, Nattapong</au><au>Kourelis, Jiorgos</au><au>Kaschani, Farnusch</au><au>Thomas, Emma L.</au><au>Morimoto, Kyoko</au><au>Kaiser, Markus</au><au>Preston, Gail M.</au><au>Ichinose, Yuki</au><au>van der Hoorn, Renier A. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2019-04-12</date><risdate>2019</risdate><volume>364</volume><issue>6436</issue><spage>145</spage><epage>145</epage><pages>145-145</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Plants and animals recognize conserved flagellin fragments as a signature of bacterial invasion. These immunogenic elicitor peptides are embedded in the flagellin polymer and require hydrolytic release before they can activate cell surface receptors. Although much of flagellin signaling is understood, little is known about the release of immunogenic fragments. We discovered that plant-secreted β-galactosidase 1 (BGAL1) of
promotes hydrolytic elicitor release and acts in immunity against pathogenic
strains only when they carry a terminal modified viosamine (mVio) in the flagellin
-glycan. In counter defense,
pathovars evade host immunity by using BGAL1-resistant
-glycans or by producing a BGAL1 inhibitor. Polymorphic glycans on flagella are common to plant and animal pathogenic bacteria and represent an important determinant of host immunity to bacterial pathogens.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>30975858</pmid><doi>10.1126/science.aav0748</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7062-6568</orcidid><orcidid>https://orcid.org/0000-0003-3882-4438</orcidid><orcidid>https://orcid.org/0000-0002-9007-1333</orcidid><orcidid>https://orcid.org/0000-0003-4756-1203</orcidid><orcidid>https://orcid.org/0000-0003-4408-8262</orcidid><orcidid>https://orcid.org/0000-0002-6540-8520</orcidid><orcidid>https://orcid.org/0000-0002-7767-7912</orcidid><orcidid>https://orcid.org/0000-0001-5696-6777</orcidid><orcidid>https://orcid.org/0000-0002-8113-9201</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2019-04, Vol.364 (6436), p.145-145 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2209598713 |
source | MEDLINE; Science Magazine |
subjects | Angiosperms Animals Apoplast Bacteria beta-Galactosidase - genetics beta-Galactosidase - metabolism Buried structures Cell surface Computational fluid dynamics DNA probes Flagella Flagellin Flagellin - immunology Flagellin - metabolism Flowers & plants Fluids Fragmentation Fragments Galactosidase Gene polymorphism Genome editing Genomes Glycan Glycosidases Glycosylation Host-Pathogen Interactions - immunology Hydrolysis Immune response Immune system Immunity Immunogenicity Infections Microorganisms Mutants Nicotiana - enzymology Nicotiana - genetics Nicotiana - immunology Nicotiana - microbiology Nicotiana benthamiana Organic chemistry Pathogens Peptides Plant immunity Plant tissues Polymers Polymers - metabolism Polymorphism Polysaccharides Polysaccharides - chemistry Polysaccharides - metabolism Protease inhibitors Proteinase inhibitors Proteins Pseudomonas syringae Pseudomonas syringae - immunology Pseudomonas syringae - pathogenicity Reactive oxygen species Recognition Regulators RESEARCH ARTICLE SUMMARY Rhamnose Shielding Strains (organisms) Thermal stability Tomatoes Virulence β-Galactosidase |
title | Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycosidase%20and%20glycan%20polymorphism%20control%20hydrolytic%20release%20of%20immunogenic%20flagellin%20peptides&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Buscaill,%20Pierre&rft.date=2019-04-12&rft.volume=364&rft.issue=6436&rft.spage=145&rft.epage=145&rft.pages=145-145&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aav0748&rft_dat=%3Cjstor_proqu%3E26649237%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2208231322&rft_id=info:pmid/30975858&rft_jstor_id=26649237&rfr_iscdi=true |