Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides

Plants and animals recognize conserved flagellin fragments as a signature of bacterial invasion. These immunogenic elicitor peptides are embedded in the flagellin polymer and require hydrolytic release before they can activate cell surface receptors. Although much of flagellin signaling is understoo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2019-04, Vol.364 (6436), p.145-145
Hauptverfasser: Buscaill, Pierre, Chandrasekar, Balakumaran, Sanguankiattichai, Nattapong, Kourelis, Jiorgos, Kaschani, Farnusch, Thomas, Emma L., Morimoto, Kyoko, Kaiser, Markus, Preston, Gail M., Ichinose, Yuki, van der Hoorn, Renier A. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 145
container_issue 6436
container_start_page 145
container_title Science (American Association for the Advancement of Science)
container_volume 364
creator Buscaill, Pierre
Chandrasekar, Balakumaran
Sanguankiattichai, Nattapong
Kourelis, Jiorgos
Kaschani, Farnusch
Thomas, Emma L.
Morimoto, Kyoko
Kaiser, Markus
Preston, Gail M.
Ichinose, Yuki
van der Hoorn, Renier A. L.
description Plants and animals recognize conserved flagellin fragments as a signature of bacterial invasion. These immunogenic elicitor peptides are embedded in the flagellin polymer and require hydrolytic release before they can activate cell surface receptors. Although much of flagellin signaling is understood, little is known about the release of immunogenic fragments. We discovered that plant-secreted β-galactosidase 1 (BGAL1) of promotes hydrolytic elicitor release and acts in immunity against pathogenic strains only when they carry a terminal modified viosamine (mVio) in the flagellin -glycan. In counter defense, pathovars evade host immunity by using BGAL1-resistant -glycans or by producing a BGAL1 inhibitor. Polymorphic glycans on flagella are common to plant and animal pathogenic bacteria and represent an important determinant of host immunity to bacterial pathogens.
doi_str_mv 10.1126/science.aav0748
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2209598713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26649237</jstor_id><sourcerecordid>26649237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-ddb6871e33324cf3f50bda0329698132ace33d46008d0fb24df716749ba349d73</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EoqUwM4EisbCk9SMvj6iCglSJBebg-NG6cuJgJ0j59zhq6MB0ZZ_vnnvvAeAWwSVCOFt5rmXD5ZKxH5gnxRmYI0jTmGJIzsEcQpLFBczTGbjy_gBh0Ci5BDMCaZ4WaTEHXxszcOu1YF5GrBHRLrxZE7XWDLV17V77OuK26Zw10X4QoQyd5pGTRo4tVkW6rvvG7mQTvpVhO2mMDgay7bSQ_hpcKGa8vJnqAny-PH-sX-Pt--Zt_bSNeUJRFwtRZUWOJCEEJ1wRlcJKMEgwzWiBCGY8SCLJICwEVBVOhMpRlie0YiShIicL8Hj0bZ397qXvylp7HnZhjbS9LzEejw8jSEAf_qEH27smbDdSBSZhHg7U6khxZ713UpWt0zVzQ4lgOYZfTuGXU_ih437y7ataihP_l3YA7o7AwXfWnXScZQnFJCe_GlqNBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2208231322</pqid></control><display><type>article</type><title>Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides</title><source>MEDLINE</source><source>Science Magazine</source><creator>Buscaill, Pierre ; Chandrasekar, Balakumaran ; Sanguankiattichai, Nattapong ; Kourelis, Jiorgos ; Kaschani, Farnusch ; Thomas, Emma L. ; Morimoto, Kyoko ; Kaiser, Markus ; Preston, Gail M. ; Ichinose, Yuki ; van der Hoorn, Renier A. L.</creator><creatorcontrib>Buscaill, Pierre ; Chandrasekar, Balakumaran ; Sanguankiattichai, Nattapong ; Kourelis, Jiorgos ; Kaschani, Farnusch ; Thomas, Emma L. ; Morimoto, Kyoko ; Kaiser, Markus ; Preston, Gail M. ; Ichinose, Yuki ; van der Hoorn, Renier A. L.</creatorcontrib><description>Plants and animals recognize conserved flagellin fragments as a signature of bacterial invasion. These immunogenic elicitor peptides are embedded in the flagellin polymer and require hydrolytic release before they can activate cell surface receptors. Although much of flagellin signaling is understood, little is known about the release of immunogenic fragments. We discovered that plant-secreted β-galactosidase 1 (BGAL1) of promotes hydrolytic elicitor release and acts in immunity against pathogenic strains only when they carry a terminal modified viosamine (mVio) in the flagellin -glycan. In counter defense, pathovars evade host immunity by using BGAL1-resistant -glycans or by producing a BGAL1 inhibitor. Polymorphic glycans on flagella are common to plant and animal pathogenic bacteria and represent an important determinant of host immunity to bacterial pathogens.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aav0748</identifier><identifier>PMID: 30975858</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Angiosperms ; Animals ; Apoplast ; Bacteria ; beta-Galactosidase - genetics ; beta-Galactosidase - metabolism ; Buried structures ; Cell surface ; Computational fluid dynamics ; DNA probes ; Flagella ; Flagellin ; Flagellin - immunology ; Flagellin - metabolism ; Flowers &amp; plants ; Fluids ; Fragmentation ; Fragments ; Galactosidase ; Gene polymorphism ; Genome editing ; Genomes ; Glycan ; Glycosidases ; Glycosylation ; Host-Pathogen Interactions - immunology ; Hydrolysis ; Immune response ; Immune system ; Immunity ; Immunogenicity ; Infections ; Microorganisms ; Mutants ; Nicotiana - enzymology ; Nicotiana - genetics ; Nicotiana - immunology ; Nicotiana - microbiology ; Nicotiana benthamiana ; Organic chemistry ; Pathogens ; Peptides ; Plant immunity ; Plant tissues ; Polymers ; Polymers - metabolism ; Polymorphism ; Polysaccharides ; Polysaccharides - chemistry ; Polysaccharides - metabolism ; Protease inhibitors ; Proteinase inhibitors ; Proteins ; Pseudomonas syringae ; Pseudomonas syringae - immunology ; Pseudomonas syringae - pathogenicity ; Reactive oxygen species ; Recognition ; Regulators ; RESEARCH ARTICLE SUMMARY ; Rhamnose ; Shielding ; Strains (organisms) ; Thermal stability ; Tomatoes ; Virulence ; β-Galactosidase</subject><ispartof>Science (American Association for the Advancement of Science), 2019-04, Vol.364 (6436), p.145-145</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-ddb6871e33324cf3f50bda0329698132ace33d46008d0fb24df716749ba349d73</citedby><cites>FETCH-LOGICAL-c491t-ddb6871e33324cf3f50bda0329698132ace33d46008d0fb24df716749ba349d73</cites><orcidid>0000-0001-7062-6568 ; 0000-0003-3882-4438 ; 0000-0002-9007-1333 ; 0000-0003-4756-1203 ; 0000-0003-4408-8262 ; 0000-0002-6540-8520 ; 0000-0002-7767-7912 ; 0000-0001-5696-6777 ; 0000-0002-8113-9201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30975858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buscaill, Pierre</creatorcontrib><creatorcontrib>Chandrasekar, Balakumaran</creatorcontrib><creatorcontrib>Sanguankiattichai, Nattapong</creatorcontrib><creatorcontrib>Kourelis, Jiorgos</creatorcontrib><creatorcontrib>Kaschani, Farnusch</creatorcontrib><creatorcontrib>Thomas, Emma L.</creatorcontrib><creatorcontrib>Morimoto, Kyoko</creatorcontrib><creatorcontrib>Kaiser, Markus</creatorcontrib><creatorcontrib>Preston, Gail M.</creatorcontrib><creatorcontrib>Ichinose, Yuki</creatorcontrib><creatorcontrib>van der Hoorn, Renier A. L.</creatorcontrib><title>Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Plants and animals recognize conserved flagellin fragments as a signature of bacterial invasion. These immunogenic elicitor peptides are embedded in the flagellin polymer and require hydrolytic release before they can activate cell surface receptors. Although much of flagellin signaling is understood, little is known about the release of immunogenic fragments. We discovered that plant-secreted β-galactosidase 1 (BGAL1) of promotes hydrolytic elicitor release and acts in immunity against pathogenic strains only when they carry a terminal modified viosamine (mVio) in the flagellin -glycan. In counter defense, pathovars evade host immunity by using BGAL1-resistant -glycans or by producing a BGAL1 inhibitor. Polymorphic glycans on flagella are common to plant and animal pathogenic bacteria and represent an important determinant of host immunity to bacterial pathogens.</description><subject>Angiosperms</subject><subject>Animals</subject><subject>Apoplast</subject><subject>Bacteria</subject><subject>beta-Galactosidase - genetics</subject><subject>beta-Galactosidase - metabolism</subject><subject>Buried structures</subject><subject>Cell surface</subject><subject>Computational fluid dynamics</subject><subject>DNA probes</subject><subject>Flagella</subject><subject>Flagellin</subject><subject>Flagellin - immunology</subject><subject>Flagellin - metabolism</subject><subject>Flowers &amp; plants</subject><subject>Fluids</subject><subject>Fragmentation</subject><subject>Fragments</subject><subject>Galactosidase</subject><subject>Gene polymorphism</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Glycan</subject><subject>Glycosidases</subject><subject>Glycosylation</subject><subject>Host-Pathogen Interactions - immunology</subject><subject>Hydrolysis</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunity</subject><subject>Immunogenicity</subject><subject>Infections</subject><subject>Microorganisms</subject><subject>Mutants</subject><subject>Nicotiana - enzymology</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - immunology</subject><subject>Nicotiana - microbiology</subject><subject>Nicotiana benthamiana</subject><subject>Organic chemistry</subject><subject>Pathogens</subject><subject>Peptides</subject><subject>Plant immunity</subject><subject>Plant tissues</subject><subject>Polymers</subject><subject>Polymers - metabolism</subject><subject>Polymorphism</subject><subject>Polysaccharides</subject><subject>Polysaccharides - chemistry</subject><subject>Polysaccharides - metabolism</subject><subject>Protease inhibitors</subject><subject>Proteinase inhibitors</subject><subject>Proteins</subject><subject>Pseudomonas syringae</subject><subject>Pseudomonas syringae - immunology</subject><subject>Pseudomonas syringae - pathogenicity</subject><subject>Reactive oxygen species</subject><subject>Recognition</subject><subject>Regulators</subject><subject>RESEARCH ARTICLE SUMMARY</subject><subject>Rhamnose</subject><subject>Shielding</subject><subject>Strains (organisms)</subject><subject>Thermal stability</subject><subject>Tomatoes</subject><subject>Virulence</subject><subject>β-Galactosidase</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkDtPwzAUhS0EoqUwM4EisbCk9SMvj6iCglSJBebg-NG6cuJgJ0j59zhq6MB0ZZ_vnnvvAeAWwSVCOFt5rmXD5ZKxH5gnxRmYI0jTmGJIzsEcQpLFBczTGbjy_gBh0Ci5BDMCaZ4WaTEHXxszcOu1YF5GrBHRLrxZE7XWDLV17V77OuK26Zw10X4QoQyd5pGTRo4tVkW6rvvG7mQTvpVhO2mMDgay7bSQ_hpcKGa8vJnqAny-PH-sX-Pt--Zt_bSNeUJRFwtRZUWOJCEEJ1wRlcJKMEgwzWiBCGY8SCLJICwEVBVOhMpRlie0YiShIicL8Hj0bZ397qXvylp7HnZhjbS9LzEejw8jSEAf_qEH27smbDdSBSZhHg7U6khxZ713UpWt0zVzQ4lgOYZfTuGXU_ih437y7ataihP_l3YA7o7AwXfWnXScZQnFJCe_GlqNBQ</recordid><startdate>20190412</startdate><enddate>20190412</enddate><creator>Buscaill, Pierre</creator><creator>Chandrasekar, Balakumaran</creator><creator>Sanguankiattichai, Nattapong</creator><creator>Kourelis, Jiorgos</creator><creator>Kaschani, Farnusch</creator><creator>Thomas, Emma L.</creator><creator>Morimoto, Kyoko</creator><creator>Kaiser, Markus</creator><creator>Preston, Gail M.</creator><creator>Ichinose, Yuki</creator><creator>van der Hoorn, Renier A. L.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7062-6568</orcidid><orcidid>https://orcid.org/0000-0003-3882-4438</orcidid><orcidid>https://orcid.org/0000-0002-9007-1333</orcidid><orcidid>https://orcid.org/0000-0003-4756-1203</orcidid><orcidid>https://orcid.org/0000-0003-4408-8262</orcidid><orcidid>https://orcid.org/0000-0002-6540-8520</orcidid><orcidid>https://orcid.org/0000-0002-7767-7912</orcidid><orcidid>https://orcid.org/0000-0001-5696-6777</orcidid><orcidid>https://orcid.org/0000-0002-8113-9201</orcidid></search><sort><creationdate>20190412</creationdate><title>Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides</title><author>Buscaill, Pierre ; Chandrasekar, Balakumaran ; Sanguankiattichai, Nattapong ; Kourelis, Jiorgos ; Kaschani, Farnusch ; Thomas, Emma L. ; Morimoto, Kyoko ; Kaiser, Markus ; Preston, Gail M. ; Ichinose, Yuki ; van der Hoorn, Renier A. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-ddb6871e33324cf3f50bda0329698132ace33d46008d0fb24df716749ba349d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Angiosperms</topic><topic>Animals</topic><topic>Apoplast</topic><topic>Bacteria</topic><topic>beta-Galactosidase - genetics</topic><topic>beta-Galactosidase - metabolism</topic><topic>Buried structures</topic><topic>Cell surface</topic><topic>Computational fluid dynamics</topic><topic>DNA probes</topic><topic>Flagella</topic><topic>Flagellin</topic><topic>Flagellin - immunology</topic><topic>Flagellin - metabolism</topic><topic>Flowers &amp; plants</topic><topic>Fluids</topic><topic>Fragmentation</topic><topic>Fragments</topic><topic>Galactosidase</topic><topic>Gene polymorphism</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Glycan</topic><topic>Glycosidases</topic><topic>Glycosylation</topic><topic>Host-Pathogen Interactions - immunology</topic><topic>Hydrolysis</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunity</topic><topic>Immunogenicity</topic><topic>Infections</topic><topic>Microorganisms</topic><topic>Mutants</topic><topic>Nicotiana - enzymology</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - immunology</topic><topic>Nicotiana - microbiology</topic><topic>Nicotiana benthamiana</topic><topic>Organic chemistry</topic><topic>Pathogens</topic><topic>Peptides</topic><topic>Plant immunity</topic><topic>Plant tissues</topic><topic>Polymers</topic><topic>Polymers - metabolism</topic><topic>Polymorphism</topic><topic>Polysaccharides</topic><topic>Polysaccharides - chemistry</topic><topic>Polysaccharides - metabolism</topic><topic>Protease inhibitors</topic><topic>Proteinase inhibitors</topic><topic>Proteins</topic><topic>Pseudomonas syringae</topic><topic>Pseudomonas syringae - immunology</topic><topic>Pseudomonas syringae - pathogenicity</topic><topic>Reactive oxygen species</topic><topic>Recognition</topic><topic>Regulators</topic><topic>RESEARCH ARTICLE SUMMARY</topic><topic>Rhamnose</topic><topic>Shielding</topic><topic>Strains (organisms)</topic><topic>Thermal stability</topic><topic>Tomatoes</topic><topic>Virulence</topic><topic>β-Galactosidase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buscaill, Pierre</creatorcontrib><creatorcontrib>Chandrasekar, Balakumaran</creatorcontrib><creatorcontrib>Sanguankiattichai, Nattapong</creatorcontrib><creatorcontrib>Kourelis, Jiorgos</creatorcontrib><creatorcontrib>Kaschani, Farnusch</creatorcontrib><creatorcontrib>Thomas, Emma L.</creatorcontrib><creatorcontrib>Morimoto, Kyoko</creatorcontrib><creatorcontrib>Kaiser, Markus</creatorcontrib><creatorcontrib>Preston, Gail M.</creatorcontrib><creatorcontrib>Ichinose, Yuki</creatorcontrib><creatorcontrib>van der Hoorn, Renier A. L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buscaill, Pierre</au><au>Chandrasekar, Balakumaran</au><au>Sanguankiattichai, Nattapong</au><au>Kourelis, Jiorgos</au><au>Kaschani, Farnusch</au><au>Thomas, Emma L.</au><au>Morimoto, Kyoko</au><au>Kaiser, Markus</au><au>Preston, Gail M.</au><au>Ichinose, Yuki</au><au>van der Hoorn, Renier A. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2019-04-12</date><risdate>2019</risdate><volume>364</volume><issue>6436</issue><spage>145</spage><epage>145</epage><pages>145-145</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Plants and animals recognize conserved flagellin fragments as a signature of bacterial invasion. These immunogenic elicitor peptides are embedded in the flagellin polymer and require hydrolytic release before they can activate cell surface receptors. Although much of flagellin signaling is understood, little is known about the release of immunogenic fragments. We discovered that plant-secreted β-galactosidase 1 (BGAL1) of promotes hydrolytic elicitor release and acts in immunity against pathogenic strains only when they carry a terminal modified viosamine (mVio) in the flagellin -glycan. In counter defense, pathovars evade host immunity by using BGAL1-resistant -glycans or by producing a BGAL1 inhibitor. Polymorphic glycans on flagella are common to plant and animal pathogenic bacteria and represent an important determinant of host immunity to bacterial pathogens.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>30975858</pmid><doi>10.1126/science.aav0748</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7062-6568</orcidid><orcidid>https://orcid.org/0000-0003-3882-4438</orcidid><orcidid>https://orcid.org/0000-0002-9007-1333</orcidid><orcidid>https://orcid.org/0000-0003-4756-1203</orcidid><orcidid>https://orcid.org/0000-0003-4408-8262</orcidid><orcidid>https://orcid.org/0000-0002-6540-8520</orcidid><orcidid>https://orcid.org/0000-0002-7767-7912</orcidid><orcidid>https://orcid.org/0000-0001-5696-6777</orcidid><orcidid>https://orcid.org/0000-0002-8113-9201</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2019-04, Vol.364 (6436), p.145-145
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2209598713
source MEDLINE; Science Magazine
subjects Angiosperms
Animals
Apoplast
Bacteria
beta-Galactosidase - genetics
beta-Galactosidase - metabolism
Buried structures
Cell surface
Computational fluid dynamics
DNA probes
Flagella
Flagellin
Flagellin - immunology
Flagellin - metabolism
Flowers & plants
Fluids
Fragmentation
Fragments
Galactosidase
Gene polymorphism
Genome editing
Genomes
Glycan
Glycosidases
Glycosylation
Host-Pathogen Interactions - immunology
Hydrolysis
Immune response
Immune system
Immunity
Immunogenicity
Infections
Microorganisms
Mutants
Nicotiana - enzymology
Nicotiana - genetics
Nicotiana - immunology
Nicotiana - microbiology
Nicotiana benthamiana
Organic chemistry
Pathogens
Peptides
Plant immunity
Plant tissues
Polymers
Polymers - metabolism
Polymorphism
Polysaccharides
Polysaccharides - chemistry
Polysaccharides - metabolism
Protease inhibitors
Proteinase inhibitors
Proteins
Pseudomonas syringae
Pseudomonas syringae - immunology
Pseudomonas syringae - pathogenicity
Reactive oxygen species
Recognition
Regulators
RESEARCH ARTICLE SUMMARY
Rhamnose
Shielding
Strains (organisms)
Thermal stability
Tomatoes
Virulence
β-Galactosidase
title Glycosidase and glycan polymorphism control hydrolytic release of immunogenic flagellin peptides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycosidase%20and%20glycan%20polymorphism%20control%20hydrolytic%20release%20of%20immunogenic%20flagellin%20peptides&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Buscaill,%20Pierre&rft.date=2019-04-12&rft.volume=364&rft.issue=6436&rft.spage=145&rft.epage=145&rft.pages=145-145&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aav0748&rft_dat=%3Cjstor_proqu%3E26649237%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2208231322&rft_id=info:pmid/30975858&rft_jstor_id=26649237&rfr_iscdi=true