How Size and Aggregation of Ice-Binding Proteins Control Their Ice Nucleation Efficiency

Organisms that thrive at cold temperatures produce ice-binding proteins to manage the nucleation and growth of ice. Bacterial ice-nucleating proteins (INP) are typically large and form aggregates in the cell membrane, while insect hyperactive antifreeze proteins (AFP) are soluble and generally small...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2019-05, Vol.141 (18), p.7439-7452
Hauptverfasser: Qiu, Yuqing, Hudait, Arpa, Molinero, Valeria
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7452
container_issue 18
container_start_page 7439
container_title Journal of the American Chemical Society
container_volume 141
creator Qiu, Yuqing
Hudait, Arpa
Molinero, Valeria
description Organisms that thrive at cold temperatures produce ice-binding proteins to manage the nucleation and growth of ice. Bacterial ice-nucleating proteins (INP) are typically large and form aggregates in the cell membrane, while insect hyperactive antifreeze proteins (AFP) are soluble and generally small. Experiments indicate that larger ice-binding proteins and their aggregates nucleate ice at warmer temperatures. Nevertheless, a quantitative understanding of how size and aggregation of ice-binding proteins determine the temperature T het at which proteins nucleate ice is still lacking. Here, we address this question using molecular simulations and nucleation theory. The simulations indicate that the 2.5 nm long antifreeze protein TmAFP nucleates ice at 2 ± 1 °C above the homogeneous nucleation temperature, in good agreement with recent experiments. We predict that the addition of ice-binding loops to TmAFP increases T het, but not enough to compete in efficiency with the bacterial INP. We implement an accurate procedure to determine T het of surfaces of finite size using classical nucleation theory, and, after validating the theory against T het of the proteins in molecular simulations, we use it to predict T het of the INP of Ps. syringae as a function of the length and number of proteins in the aggregates. We conclude that assemblies with at most 34 INP already reach the T het = −2 °C characteristic of this bacterium. Interestingly, we find that T het is a strongly varying nonmonotonic function of the distance between proteins in the aggregates. This indicates that, to achieve maximum freezing efficiency, bacteria must exert exquisite, subangstrom control of the distance between INP in their membrane.
doi_str_mv 10.1021/jacs.9b01854
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2209598264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2209598264</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-de8fbdbddf4508a7d8853654c6f3307c40a67df040e74bea00ac1bd6ce29012a3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWj9uniVHD26dZHezu8daqhVEBRW8LdlkUlO2SU12Ef31trTqxdMw8LzvMA8hpwyGDDi7nEsVh1UDrMyzHTJgOYckZ1zskgEA8KQoRXpADmOcr9aMl2yfHKRQFUUqxIC8Tv0HfbJfSKXTdDSbBZzJznpHvaG3CpMr67R1M_oYfIfWRTr2rgu-pc9vaMMaofe9anETmhhjlUWnPo_JnpFtxJPtPCIv15Pn8TS5e7i5HY_uEplWVZdoLE2jG61NlkMpC12WeSryTAmTplCoDKQotIEMsMgalABSsUYLhbwCxmV6RM43vcvg33uMXb2wUWHbSoe-jzXnUOVVyUW2Qi82qAo-xoCmXga7kOGzZlCvXdZrl_XW5Qo_2zb3zQL1L_wj7-_0OjX3fXCrR__v-gYGYXzi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209598264</pqid></control><display><type>article</type><title>How Size and Aggregation of Ice-Binding Proteins Control Their Ice Nucleation Efficiency</title><source>ACS Publications</source><creator>Qiu, Yuqing ; Hudait, Arpa ; Molinero, Valeria</creator><creatorcontrib>Qiu, Yuqing ; Hudait, Arpa ; Molinero, Valeria</creatorcontrib><description>Organisms that thrive at cold temperatures produce ice-binding proteins to manage the nucleation and growth of ice. Bacterial ice-nucleating proteins (INP) are typically large and form aggregates in the cell membrane, while insect hyperactive antifreeze proteins (AFP) are soluble and generally small. Experiments indicate that larger ice-binding proteins and their aggregates nucleate ice at warmer temperatures. Nevertheless, a quantitative understanding of how size and aggregation of ice-binding proteins determine the temperature T het at which proteins nucleate ice is still lacking. Here, we address this question using molecular simulations and nucleation theory. The simulations indicate that the 2.5 nm long antifreeze protein TmAFP nucleates ice at 2 ± 1 °C above the homogeneous nucleation temperature, in good agreement with recent experiments. We predict that the addition of ice-binding loops to TmAFP increases T het, but not enough to compete in efficiency with the bacterial INP. We implement an accurate procedure to determine T het of surfaces of finite size using classical nucleation theory, and, after validating the theory against T het of the proteins in molecular simulations, we use it to predict T het of the INP of Ps. syringae as a function of the length and number of proteins in the aggregates. We conclude that assemblies with at most 34 INP already reach the T het = −2 °C characteristic of this bacterium. Interestingly, we find that T het is a strongly varying nonmonotonic function of the distance between proteins in the aggregates. This indicates that, to achieve maximum freezing efficiency, bacteria must exert exquisite, subangstrom control of the distance between INP in their membrane.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.9b01854</identifier><identifier>PMID: 30977366</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2019-05, Vol.141 (18), p.7439-7452</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-de8fbdbddf4508a7d8853654c6f3307c40a67df040e74bea00ac1bd6ce29012a3</citedby><cites>FETCH-LOGICAL-a399t-de8fbdbddf4508a7d8853654c6f3307c40a67df040e74bea00ac1bd6ce29012a3</cites><orcidid>0000-0002-0745-3155 ; 0000-0002-8577-4675 ; 0000-0002-4279-4000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.9b01854$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.9b01854$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30977366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Yuqing</creatorcontrib><creatorcontrib>Hudait, Arpa</creatorcontrib><creatorcontrib>Molinero, Valeria</creatorcontrib><title>How Size and Aggregation of Ice-Binding Proteins Control Their Ice Nucleation Efficiency</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Organisms that thrive at cold temperatures produce ice-binding proteins to manage the nucleation and growth of ice. Bacterial ice-nucleating proteins (INP) are typically large and form aggregates in the cell membrane, while insect hyperactive antifreeze proteins (AFP) are soluble and generally small. Experiments indicate that larger ice-binding proteins and their aggregates nucleate ice at warmer temperatures. Nevertheless, a quantitative understanding of how size and aggregation of ice-binding proteins determine the temperature T het at which proteins nucleate ice is still lacking. Here, we address this question using molecular simulations and nucleation theory. The simulations indicate that the 2.5 nm long antifreeze protein TmAFP nucleates ice at 2 ± 1 °C above the homogeneous nucleation temperature, in good agreement with recent experiments. We predict that the addition of ice-binding loops to TmAFP increases T het, but not enough to compete in efficiency with the bacterial INP. We implement an accurate procedure to determine T het of surfaces of finite size using classical nucleation theory, and, after validating the theory against T het of the proteins in molecular simulations, we use it to predict T het of the INP of Ps. syringae as a function of the length and number of proteins in the aggregates. We conclude that assemblies with at most 34 INP already reach the T het = −2 °C characteristic of this bacterium. Interestingly, we find that T het is a strongly varying nonmonotonic function of the distance between proteins in the aggregates. This indicates that, to achieve maximum freezing efficiency, bacteria must exert exquisite, subangstrom control of the distance between INP in their membrane.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMoWj9uniVHD26dZHezu8daqhVEBRW8LdlkUlO2SU12Ef31trTqxdMw8LzvMA8hpwyGDDi7nEsVh1UDrMyzHTJgOYckZ1zskgEA8KQoRXpADmOcr9aMl2yfHKRQFUUqxIC8Tv0HfbJfSKXTdDSbBZzJznpHvaG3CpMr67R1M_oYfIfWRTr2rgu-pc9vaMMaofe9anETmhhjlUWnPo_JnpFtxJPtPCIv15Pn8TS5e7i5HY_uEplWVZdoLE2jG61NlkMpC12WeSryTAmTplCoDKQotIEMsMgalABSsUYLhbwCxmV6RM43vcvg33uMXb2wUWHbSoe-jzXnUOVVyUW2Qi82qAo-xoCmXga7kOGzZlCvXdZrl_XW5Qo_2zb3zQL1L_wj7-_0OjX3fXCrR__v-gYGYXzi</recordid><startdate>20190508</startdate><enddate>20190508</enddate><creator>Qiu, Yuqing</creator><creator>Hudait, Arpa</creator><creator>Molinero, Valeria</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0745-3155</orcidid><orcidid>https://orcid.org/0000-0002-8577-4675</orcidid><orcidid>https://orcid.org/0000-0002-4279-4000</orcidid></search><sort><creationdate>20190508</creationdate><title>How Size and Aggregation of Ice-Binding Proteins Control Their Ice Nucleation Efficiency</title><author>Qiu, Yuqing ; Hudait, Arpa ; Molinero, Valeria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-de8fbdbddf4508a7d8853654c6f3307c40a67df040e74bea00ac1bd6ce29012a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Yuqing</creatorcontrib><creatorcontrib>Hudait, Arpa</creatorcontrib><creatorcontrib>Molinero, Valeria</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Yuqing</au><au>Hudait, Arpa</au><au>Molinero, Valeria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Size and Aggregation of Ice-Binding Proteins Control Their Ice Nucleation Efficiency</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2019-05-08</date><risdate>2019</risdate><volume>141</volume><issue>18</issue><spage>7439</spage><epage>7452</epage><pages>7439-7452</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Organisms that thrive at cold temperatures produce ice-binding proteins to manage the nucleation and growth of ice. Bacterial ice-nucleating proteins (INP) are typically large and form aggregates in the cell membrane, while insect hyperactive antifreeze proteins (AFP) are soluble and generally small. Experiments indicate that larger ice-binding proteins and their aggregates nucleate ice at warmer temperatures. Nevertheless, a quantitative understanding of how size and aggregation of ice-binding proteins determine the temperature T het at which proteins nucleate ice is still lacking. Here, we address this question using molecular simulations and nucleation theory. The simulations indicate that the 2.5 nm long antifreeze protein TmAFP nucleates ice at 2 ± 1 °C above the homogeneous nucleation temperature, in good agreement with recent experiments. We predict that the addition of ice-binding loops to TmAFP increases T het, but not enough to compete in efficiency with the bacterial INP. We implement an accurate procedure to determine T het of surfaces of finite size using classical nucleation theory, and, after validating the theory against T het of the proteins in molecular simulations, we use it to predict T het of the INP of Ps. syringae as a function of the length and number of proteins in the aggregates. We conclude that assemblies with at most 34 INP already reach the T het = −2 °C characteristic of this bacterium. Interestingly, we find that T het is a strongly varying nonmonotonic function of the distance between proteins in the aggregates. This indicates that, to achieve maximum freezing efficiency, bacteria must exert exquisite, subangstrom control of the distance between INP in their membrane.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30977366</pmid><doi>10.1021/jacs.9b01854</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0745-3155</orcidid><orcidid>https://orcid.org/0000-0002-8577-4675</orcidid><orcidid>https://orcid.org/0000-0002-4279-4000</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2019-05, Vol.141 (18), p.7439-7452
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2209598264
source ACS Publications
title How Size and Aggregation of Ice-Binding Proteins Control Their Ice Nucleation Efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Size%20and%20Aggregation%20of%20Ice-Binding%20Proteins%20Control%20Their%20Ice%20Nucleation%20Efficiency&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Qiu,%20Yuqing&rft.date=2019-05-08&rft.volume=141&rft.issue=18&rft.spage=7439&rft.epage=7452&rft.pages=7439-7452&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.9b01854&rft_dat=%3Cproquest_cross%3E2209598264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2209598264&rft_id=info:pmid/30977366&rfr_iscdi=true