Quantitative Measurement of Iron-Silicides by EPMA Using the Fe Lα and Lβ X-ray Lines: A New Twist to an Old Approach
The recent availability of Schottky-type field emission electron microprobes provides incentive to consider analyzing micrometer-sized features. Yet, to quantify sub-micrometer-sized features, the electron interaction volume must be reduced by decreasing accelerating voltage. However, the K lines of...
Gespeichert in:
Veröffentlicht in: | Microscopy and microanalysis 2019-06, Vol.25 (3), p.664-674 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 674 |
---|---|
container_issue | 3 |
container_start_page | 664 |
container_title | Microscopy and microanalysis |
container_volume | 25 |
creator | Moy, Aurélien Fournelle, John von der Handt, Anette |
description | The recent availability of Schottky-type field emission electron microprobes provides incentive to consider analyzing micrometer-sized features. Yet, to quantify sub-micrometer-sized features, the electron interaction volume must be reduced by decreasing accelerating voltage. However, the K lines of the transition elements (e.g., Fe) then cannot be excited, and the L lines must be used. The Fe Lα1,2 line is the most intense of the L series but bonding effects change its atomic parameters because it involves a valence band electron transition. For successful traditional electron probe microanalysis, the mass absorption coefficient (MAC) must be accurately known, but the MAC of Fe Lα1,2 radiation by Fe atoms varies from one Fe-compound to another and is not well known. We show that the conventional method of measuring the MAC by an electron probe cannot be used in close proximity to absorption edges, making its accurate determination impossible. Fortunately, we demonstrate, using a set of Fe–silicide compounds, that it is possible to derive an accurate calibration curve, for a given accelerating voltage and takeoff angle, which can be used to quantify Fe in Fe–silicide compounds. The calibration curve can be applied to any spectrometer without calibration and gives accurate quantification results. |
doi_str_mv | 10.1017/S1431927619000436 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2209597219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1431927619000436</cupid><sourcerecordid>2231324710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-d4abfe397de2cd064b8af68dd97d27ac427757ffbc56a214d7a009ebe6ad506a3</originalsourceid><addsrcrecordid>eNp1kd1OFEEQhTtEI4g-ADemEm-8Gemfme4d7zYElGQRDZBwN6mZroEm87N097jZx4IH8ZlsYNFE41VVqr46p5LD2J7gHwUXZv9M5EqU0mhRcs5zpbfYThoV2UyI4sVjL7KH_TZ7HcJNYhQ3-hXbVrw0Ji_0Dlt9n3CILmJ0PwhOCMPkqachwtjCsR-H7Mx1rnGWAtRrOPx2MoeL4IYriNcERwSLn3eAg031Hi4zj2tYuIHCJ5jDV1rB-cqFCHFMDJx2FubLpR-xuX7DXrbYBXq7qbvs4ujw_OBLtjj9fHwwX2SNMipmNse6JVUaS7KxXOf1DFs9szZNpMEml8YUpm3rptAoRW4Ncl5STRptwTWqXfbhSTfZ3k4UYtW70FDX4UDjFCopeVmURooyoe__Qm_GyQ_pu0QpoWRuBE-UeKIaP4bgqa2W3vXo15Xg1UMq1T-ppJt3G-Wp7sn-vniOIQFqI4p97Z29oj_e_5f9BY5Ylkk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231324710</pqid></control><display><type>article</type><title>Quantitative Measurement of Iron-Silicides by EPMA Using the Fe Lα and Lβ X-ray Lines: A New Twist to an Old Approach</title><source>Alma/SFX Local Collection</source><creator>Moy, Aurélien ; Fournelle, John ; von der Handt, Anette</creator><creatorcontrib>Moy, Aurélien ; Fournelle, John ; von der Handt, Anette</creatorcontrib><description>The recent availability of Schottky-type field emission electron microprobes provides incentive to consider analyzing micrometer-sized features. Yet, to quantify sub-micrometer-sized features, the electron interaction volume must be reduced by decreasing accelerating voltage. However, the K lines of the transition elements (e.g., Fe) then cannot be excited, and the L lines must be used. The Fe Lα1,2 line is the most intense of the L series but bonding effects change its atomic parameters because it involves a valence band electron transition. For successful traditional electron probe microanalysis, the mass absorption coefficient (MAC) must be accurately known, but the MAC of Fe Lα1,2 radiation by Fe atoms varies from one Fe-compound to another and is not well known. We show that the conventional method of measuring the MAC by an electron probe cannot be used in close proximity to absorption edges, making its accurate determination impossible. Fortunately, we demonstrate, using a set of Fe–silicide compounds, that it is possible to derive an accurate calibration curve, for a given accelerating voltage and takeoff angle, which can be used to quantify Fe in Fe–silicide compounds. The calibration curve can be applied to any spectrometer without calibration and gives accurate quantification results.</description><identifier>ISSN: 1431-9276</identifier><identifier>EISSN: 1435-8115</identifier><identifier>DOI: 10.1017/S1431927619000436</identifier><identifier>PMID: 30977456</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Absorption ; Absorptivity ; Calibration ; Chemical bonds ; Electric potential ; Electron probe ; Electron probe microanalysis ; Electron probes ; Electron transitions ; Emission analysis ; Field emission ; Intermetallic compounds ; Iron ; K lines ; Lyman spectra ; Materials Applications ; Silicides ; Valence band ; Voltage ; X-rays</subject><ispartof>Microscopy and microanalysis, 2019-06, Vol.25 (3), p.664-674</ispartof><rights>Copyright © Microscopy Society of America 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-d4abfe397de2cd064b8af68dd97d27ac427757ffbc56a214d7a009ebe6ad506a3</citedby><cites>FETCH-LOGICAL-c373t-d4abfe397de2cd064b8af68dd97d27ac427757ffbc56a214d7a009ebe6ad506a3</cites><orcidid>0000-0001-7020-3776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30977456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moy, Aurélien</creatorcontrib><creatorcontrib>Fournelle, John</creatorcontrib><creatorcontrib>von der Handt, Anette</creatorcontrib><title>Quantitative Measurement of Iron-Silicides by EPMA Using the Fe Lα and Lβ X-ray Lines: A New Twist to an Old Approach</title><title>Microscopy and microanalysis</title><addtitle>Microsc Microanal</addtitle><description>The recent availability of Schottky-type field emission electron microprobes provides incentive to consider analyzing micrometer-sized features. Yet, to quantify sub-micrometer-sized features, the electron interaction volume must be reduced by decreasing accelerating voltage. However, the K lines of the transition elements (e.g., Fe) then cannot be excited, and the L lines must be used. The Fe Lα1,2 line is the most intense of the L series but bonding effects change its atomic parameters because it involves a valence band electron transition. For successful traditional electron probe microanalysis, the mass absorption coefficient (MAC) must be accurately known, but the MAC of Fe Lα1,2 radiation by Fe atoms varies from one Fe-compound to another and is not well known. We show that the conventional method of measuring the MAC by an electron probe cannot be used in close proximity to absorption edges, making its accurate determination impossible. Fortunately, we demonstrate, using a set of Fe–silicide compounds, that it is possible to derive an accurate calibration curve, for a given accelerating voltage and takeoff angle, which can be used to quantify Fe in Fe–silicide compounds. The calibration curve can be applied to any spectrometer without calibration and gives accurate quantification results.</description><subject>Absorption</subject><subject>Absorptivity</subject><subject>Calibration</subject><subject>Chemical bonds</subject><subject>Electric potential</subject><subject>Electron probe</subject><subject>Electron probe microanalysis</subject><subject>Electron probes</subject><subject>Electron transitions</subject><subject>Emission analysis</subject><subject>Field emission</subject><subject>Intermetallic compounds</subject><subject>Iron</subject><subject>K lines</subject><subject>Lyman spectra</subject><subject>Materials Applications</subject><subject>Silicides</subject><subject>Valence band</subject><subject>Voltage</subject><subject>X-rays</subject><issn>1431-9276</issn><issn>1435-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kd1OFEEQhTtEI4g-ADemEm-8Gemfme4d7zYElGQRDZBwN6mZroEm87N097jZx4IH8ZlsYNFE41VVqr46p5LD2J7gHwUXZv9M5EqU0mhRcs5zpbfYThoV2UyI4sVjL7KH_TZ7HcJNYhQ3-hXbVrw0Ji_0Dlt9n3CILmJ0PwhOCMPkqachwtjCsR-H7Mx1rnGWAtRrOPx2MoeL4IYriNcERwSLn3eAg031Hi4zj2tYuIHCJ5jDV1rB-cqFCHFMDJx2FubLpR-xuX7DXrbYBXq7qbvs4ujw_OBLtjj9fHwwX2SNMipmNse6JVUaS7KxXOf1DFs9szZNpMEml8YUpm3rptAoRW4Ncl5STRptwTWqXfbhSTfZ3k4UYtW70FDX4UDjFCopeVmURooyoe__Qm_GyQ_pu0QpoWRuBE-UeKIaP4bgqa2W3vXo15Xg1UMq1T-ppJt3G-Wp7sn-vniOIQFqI4p97Z29oj_e_5f9BY5Ylkk</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Moy, Aurélien</creator><creator>Fournelle, John</creator><creator>von der Handt, Anette</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7020-3776</orcidid></search><sort><creationdate>20190601</creationdate><title>Quantitative Measurement of Iron-Silicides by EPMA Using the Fe Lα and Lβ X-ray Lines: A New Twist to an Old Approach</title><author>Moy, Aurélien ; Fournelle, John ; von der Handt, Anette</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-d4abfe397de2cd064b8af68dd97d27ac427757ffbc56a214d7a009ebe6ad506a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Absorptivity</topic><topic>Calibration</topic><topic>Chemical bonds</topic><topic>Electric potential</topic><topic>Electron probe</topic><topic>Electron probe microanalysis</topic><topic>Electron probes</topic><topic>Electron transitions</topic><topic>Emission analysis</topic><topic>Field emission</topic><topic>Intermetallic compounds</topic><topic>Iron</topic><topic>K lines</topic><topic>Lyman spectra</topic><topic>Materials Applications</topic><topic>Silicides</topic><topic>Valence band</topic><topic>Voltage</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moy, Aurélien</creatorcontrib><creatorcontrib>Fournelle, John</creatorcontrib><creatorcontrib>von der Handt, Anette</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy and microanalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moy, Aurélien</au><au>Fournelle, John</au><au>von der Handt, Anette</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Measurement of Iron-Silicides by EPMA Using the Fe Lα and Lβ X-ray Lines: A New Twist to an Old Approach</atitle><jtitle>Microscopy and microanalysis</jtitle><addtitle>Microsc Microanal</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>25</volume><issue>3</issue><spage>664</spage><epage>674</epage><pages>664-674</pages><issn>1431-9276</issn><eissn>1435-8115</eissn><abstract>The recent availability of Schottky-type field emission electron microprobes provides incentive to consider analyzing micrometer-sized features. Yet, to quantify sub-micrometer-sized features, the electron interaction volume must be reduced by decreasing accelerating voltage. However, the K lines of the transition elements (e.g., Fe) then cannot be excited, and the L lines must be used. The Fe Lα1,2 line is the most intense of the L series but bonding effects change its atomic parameters because it involves a valence band electron transition. For successful traditional electron probe microanalysis, the mass absorption coefficient (MAC) must be accurately known, but the MAC of Fe Lα1,2 radiation by Fe atoms varies from one Fe-compound to another and is not well known. We show that the conventional method of measuring the MAC by an electron probe cannot be used in close proximity to absorption edges, making its accurate determination impossible. Fortunately, we demonstrate, using a set of Fe–silicide compounds, that it is possible to derive an accurate calibration curve, for a given accelerating voltage and takeoff angle, which can be used to quantify Fe in Fe–silicide compounds. The calibration curve can be applied to any spectrometer without calibration and gives accurate quantification results.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><pmid>30977456</pmid><doi>10.1017/S1431927619000436</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7020-3776</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1431-9276 |
ispartof | Microscopy and microanalysis, 2019-06, Vol.25 (3), p.664-674 |
issn | 1431-9276 1435-8115 |
language | eng |
recordid | cdi_proquest_miscellaneous_2209597219 |
source | Alma/SFX Local Collection |
subjects | Absorption Absorptivity Calibration Chemical bonds Electric potential Electron probe Electron probe microanalysis Electron probes Electron transitions Emission analysis Field emission Intermetallic compounds Iron K lines Lyman spectra Materials Applications Silicides Valence band Voltage X-rays |
title | Quantitative Measurement of Iron-Silicides by EPMA Using the Fe Lα and Lβ X-ray Lines: A New Twist to an Old Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Measurement%20of%20Iron-Silicides%20by%20EPMA%20Using%20the%20Fe%20L%CE%B1%20and%20L%CE%B2%20X-ray%20Lines:%20A%20New%20Twist%20to%20an%20Old%20Approach&rft.jtitle=Microscopy%20and%20microanalysis&rft.au=Moy,%20Aur%C3%A9lien&rft.date=2019-06-01&rft.volume=25&rft.issue=3&rft.spage=664&rft.epage=674&rft.pages=664-674&rft.issn=1431-9276&rft.eissn=1435-8115&rft_id=info:doi/10.1017/S1431927619000436&rft_dat=%3Cproquest_cross%3E2231324710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231324710&rft_id=info:pmid/30977456&rft_cupid=10_1017_S1431927619000436&rfr_iscdi=true |