Long noncoding RNA GAS5 modulates α-Solanine-induced radiosensitivity by negatively regulating miR-18a in human prostate cancer cells

Radiotherapy is an adjuvant treatment of surgery in prostate cancer, while radioresistance has been the challenge of treatment. It has been reported that α-Solanine exhibits anti-cancer activity and enhances the chemo- and radio-sensitivity in several human cancers, whereas the role of α-Solanine on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedicine & pharmacotherapy 2019-04, Vol.112, p.108656-108656, Article 108656
Hauptverfasser: Yang, Jinhui, Hao, Tongtong, Sun, Jiantao, Wei, Pengtao, Zhang, Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radiotherapy is an adjuvant treatment of surgery in prostate cancer, while radioresistance has been the challenge of treatment. It has been reported that α-Solanine exhibits anti-cancer activity and enhances the chemo- and radio-sensitivity in several human cancers, whereas the role of α-Solanine on radiosensitivity to PCa remains to be uncovered yet. We found α-Solanine decreased cell viability in human PCa cells rather than normal prostate epithelial cells in vitro. Functional experiments showed that cell viability and colonies formation were declined & apoptosis rate and DNA double strand breaks (DSBs) marker γ-H2AX expressions were elevated by α-Solanine in PCa cells treated with X-ray irradiation, compared with X-ray irradiation treatment only. GAS5 was down-regulated & miR-18a was up-regulated in PCa cells, which was reversed in the presence of α-Solanine. Effects of ectopic GAS5 on inhibiting cell viability and survival & promoting apoptosis and DNA damage were reversed by miR-18a overexpression in PCa cells. Moreover, GAS5 regulated miR-18a expression by target binding during α-Solanine treatment. Collectively, α-Solanine suppresses cell proliferation and promotes radiosensitivity through up-regulating GAS5/miR-18a pathway in PCa. Our results provide a novel mechanism of α-Solanine treatment in human prostate cancer and help to develop a new approach to sensitizing radioresistant prostate cancer cells by targeting GAS5/miR-18a.
ISSN:0753-3322
1950-6007
DOI:10.1016/j.biopha.2019.108656