Cognitive diagnosis models for multiple strategies
Cognitive diagnosis models (CDMs) have been used as psychometric tools in educational assessments to estimate students’ proficiency profiles. However, most CDMs assume that all students adopt the same strategy when approaching problems in an assessment, which may not be the case in practice. This st...
Gespeichert in:
Veröffentlicht in: | British journal of mathematical & statistical psychology 2019-05, Vol.72 (2), p.370-392 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 392 |
---|---|
container_issue | 2 |
container_start_page | 370 |
container_title | British journal of mathematical & statistical psychology |
container_volume | 72 |
creator | Ma, Wenchao Guo, Wenjing |
description | Cognitive diagnosis models (CDMs) have been used as psychometric tools in educational assessments to estimate students’ proficiency profiles. However, most CDMs assume that all students adopt the same strategy when approaching problems in an assessment, which may not be the case in practice. This study develops a generalized multiple‐strategy CDM for dichotomous response data. The proposed model provides a unified framework to accommodate various condensation rules (e.g., conjunctive, disjunctive, and additive) and different strategy selection approaches (i.e., probability‐matching, over‐matching, and maximizing). Model parameters are estimated using the marginal maximum likelihood estimation via expectation‐maximization algorithm. Simulation studies showed that the parameters of the proposed model can be adequately recovered and that the proposed model was relatively robust to some types of model misspecifications. A set of real data was analysed as well to illustrate the use of the proposed model in practice. |
doi_str_mv | 10.1111/bmsp.12155 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2207162912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2206129334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4235-e902f1daa6b00392d4962aa735676583928730f1245982d4a618cb17aec1f4733</originalsourceid><addsrcrecordid>eNp90M1KxDAUBeAgijOObnwAKbgRoWNu0iTtUgf_QFFQ1yFt0yFD29SkVebtzdjRhQuzuZD7cbgchI4BzyG8i7zx3RwIMLaDpgQnSZxSELtoijEWMQAmE3Tg_QpjIAzzfTShWDBO02yKyMIuW9ObDx2VRi1b642PGlvq2keVdVEz1L3pah353qleL432h2ivUrXXR9s5Q28316-Lu_jh6fZ-cfkQFwmhLNYZJhWUSvEcY5qRMsk4UUpQxgVnafhJBcUVkIRladgqDmmRg1C6gCoRlM7Q2ZjbOfs-aN_LxvhC17VqtR28JAQL4CQDEujpH7qyg2vDdRvFgWSUJkGdj6pw1nunK9k50yi3loDlpkm5aVJ-NxnwyTZyyBtd_tKf6gKAEXyaWq__iZJXjy_PY-gXO9V7Sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206129334</pqid></control><display><type>article</type><title>Cognitive diagnosis models for multiple strategies</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ma, Wenchao ; Guo, Wenjing</creator><creatorcontrib>Ma, Wenchao ; Guo, Wenjing</creatorcontrib><description>Cognitive diagnosis models (CDMs) have been used as psychometric tools in educational assessments to estimate students’ proficiency profiles. However, most CDMs assume that all students adopt the same strategy when approaching problems in an assessment, which may not be the case in practice. This study develops a generalized multiple‐strategy CDM for dichotomous response data. The proposed model provides a unified framework to accommodate various condensation rules (e.g., conjunctive, disjunctive, and additive) and different strategy selection approaches (i.e., probability‐matching, over‐matching, and maximizing). Model parameters are estimated using the marginal maximum likelihood estimation via expectation‐maximization algorithm. Simulation studies showed that the parameters of the proposed model can be adequately recovered and that the proposed model was relatively robust to some types of model misspecifications. A set of real data was analysed as well to illustrate the use of the proposed model in practice.</description><identifier>ISSN: 0007-1102</identifier><identifier>EISSN: 2044-8317</identifier><identifier>DOI: 10.1111/bmsp.12155</identifier><identifier>PMID: 30756389</identifier><language>eng</language><publisher>England: British Psychological Society</publisher><subject>Algorithms ; Cognition ; cognitive diagnosis ; Computer Simulation ; Diagnosis ; diagnostic classification ; Economic models ; Educational Measurement - methods ; Humans ; item response ; Likelihood Functions ; Mathematical models ; Maximization ; Maximum likelihood estimation ; multiple strategy ; Optimization ; Parameter estimation ; psychometric ; Psychometrics - methods ; Strategy ; Students</subject><ispartof>British journal of mathematical & statistical psychology, 2019-05, Vol.72 (2), p.370-392</ispartof><rights>2019 The British Psychological Society</rights><rights>2019 The British Psychological Society.</rights><rights>Copyright © 2019 The British Psychological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4235-e902f1daa6b00392d4962aa735676583928730f1245982d4a618cb17aec1f4733</citedby><cites>FETCH-LOGICAL-c4235-e902f1daa6b00392d4962aa735676583928730f1245982d4a618cb17aec1f4733</cites><orcidid>0000-0002-6763-0707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbmsp.12155$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbmsp.12155$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30756389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Wenchao</creatorcontrib><creatorcontrib>Guo, Wenjing</creatorcontrib><title>Cognitive diagnosis models for multiple strategies</title><title>British journal of mathematical & statistical psychology</title><addtitle>Br J Math Stat Psychol</addtitle><description>Cognitive diagnosis models (CDMs) have been used as psychometric tools in educational assessments to estimate students’ proficiency profiles. However, most CDMs assume that all students adopt the same strategy when approaching problems in an assessment, which may not be the case in practice. This study develops a generalized multiple‐strategy CDM for dichotomous response data. The proposed model provides a unified framework to accommodate various condensation rules (e.g., conjunctive, disjunctive, and additive) and different strategy selection approaches (i.e., probability‐matching, over‐matching, and maximizing). Model parameters are estimated using the marginal maximum likelihood estimation via expectation‐maximization algorithm. Simulation studies showed that the parameters of the proposed model can be adequately recovered and that the proposed model was relatively robust to some types of model misspecifications. A set of real data was analysed as well to illustrate the use of the proposed model in practice.</description><subject>Algorithms</subject><subject>Cognition</subject><subject>cognitive diagnosis</subject><subject>Computer Simulation</subject><subject>Diagnosis</subject><subject>diagnostic classification</subject><subject>Economic models</subject><subject>Educational Measurement - methods</subject><subject>Humans</subject><subject>item response</subject><subject>Likelihood Functions</subject><subject>Mathematical models</subject><subject>Maximization</subject><subject>Maximum likelihood estimation</subject><subject>multiple strategy</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>psychometric</subject><subject>Psychometrics - methods</subject><subject>Strategy</subject><subject>Students</subject><issn>0007-1102</issn><issn>2044-8317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90M1KxDAUBeAgijOObnwAKbgRoWNu0iTtUgf_QFFQ1yFt0yFD29SkVebtzdjRhQuzuZD7cbgchI4BzyG8i7zx3RwIMLaDpgQnSZxSELtoijEWMQAmE3Tg_QpjIAzzfTShWDBO02yKyMIuW9ObDx2VRi1b642PGlvq2keVdVEz1L3pah353qleL432h2ivUrXXR9s5Q28316-Lu_jh6fZ-cfkQFwmhLNYZJhWUSvEcY5qRMsk4UUpQxgVnafhJBcUVkIRladgqDmmRg1C6gCoRlM7Q2ZjbOfs-aN_LxvhC17VqtR28JAQL4CQDEujpH7qyg2vDdRvFgWSUJkGdj6pw1nunK9k50yi3loDlpkm5aVJ-NxnwyTZyyBtd_tKf6gKAEXyaWq__iZJXjy_PY-gXO9V7Sg</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Ma, Wenchao</creator><creator>Guo, Wenjing</creator><general>British Psychological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6763-0707</orcidid></search><sort><creationdate>201905</creationdate><title>Cognitive diagnosis models for multiple strategies</title><author>Ma, Wenchao ; Guo, Wenjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4235-e902f1daa6b00392d4962aa735676583928730f1245982d4a618cb17aec1f4733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Cognition</topic><topic>cognitive diagnosis</topic><topic>Computer Simulation</topic><topic>Diagnosis</topic><topic>diagnostic classification</topic><topic>Economic models</topic><topic>Educational Measurement - methods</topic><topic>Humans</topic><topic>item response</topic><topic>Likelihood Functions</topic><topic>Mathematical models</topic><topic>Maximization</topic><topic>Maximum likelihood estimation</topic><topic>multiple strategy</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>psychometric</topic><topic>Psychometrics - methods</topic><topic>Strategy</topic><topic>Students</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Wenchao</creatorcontrib><creatorcontrib>Guo, Wenjing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of mathematical & statistical psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Wenchao</au><au>Guo, Wenjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cognitive diagnosis models for multiple strategies</atitle><jtitle>British journal of mathematical & statistical psychology</jtitle><addtitle>Br J Math Stat Psychol</addtitle><date>2019-05</date><risdate>2019</risdate><volume>72</volume><issue>2</issue><spage>370</spage><epage>392</epage><pages>370-392</pages><issn>0007-1102</issn><eissn>2044-8317</eissn><abstract>Cognitive diagnosis models (CDMs) have been used as psychometric tools in educational assessments to estimate students’ proficiency profiles. However, most CDMs assume that all students adopt the same strategy when approaching problems in an assessment, which may not be the case in practice. This study develops a generalized multiple‐strategy CDM for dichotomous response data. The proposed model provides a unified framework to accommodate various condensation rules (e.g., conjunctive, disjunctive, and additive) and different strategy selection approaches (i.e., probability‐matching, over‐matching, and maximizing). Model parameters are estimated using the marginal maximum likelihood estimation via expectation‐maximization algorithm. Simulation studies showed that the parameters of the proposed model can be adequately recovered and that the proposed model was relatively robust to some types of model misspecifications. A set of real data was analysed as well to illustrate the use of the proposed model in practice.</abstract><cop>England</cop><pub>British Psychological Society</pub><pmid>30756389</pmid><doi>10.1111/bmsp.12155</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6763-0707</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-1102 |
ispartof | British journal of mathematical & statistical psychology, 2019-05, Vol.72 (2), p.370-392 |
issn | 0007-1102 2044-8317 |
language | eng |
recordid | cdi_proquest_miscellaneous_2207162912 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Cognition cognitive diagnosis Computer Simulation Diagnosis diagnostic classification Economic models Educational Measurement - methods Humans item response Likelihood Functions Mathematical models Maximization Maximum likelihood estimation multiple strategy Optimization Parameter estimation psychometric Psychometrics - methods Strategy Students |
title | Cognitive diagnosis models for multiple strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cognitive%20diagnosis%20models%20for%20multiple%20strategies&rft.jtitle=British%20journal%20of%20mathematical%20&%20statistical%20psychology&rft.au=Ma,%20Wenchao&rft.date=2019-05&rft.volume=72&rft.issue=2&rft.spage=370&rft.epage=392&rft.pages=370-392&rft.issn=0007-1102&rft.eissn=2044-8317&rft_id=info:doi/10.1111/bmsp.12155&rft_dat=%3Cproquest_cross%3E2206129334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206129334&rft_id=info:pmid/30756389&rfr_iscdi=true |