Cognitive diagnosis models for multiple strategies

Cognitive diagnosis models (CDMs) have been used as psychometric tools in educational assessments to estimate students’ proficiency profiles. However, most CDMs assume that all students adopt the same strategy when approaching problems in an assessment, which may not be the case in practice. This st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of mathematical & statistical psychology 2019-05, Vol.72 (2), p.370-392
Hauptverfasser: Ma, Wenchao, Guo, Wenjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 392
container_issue 2
container_start_page 370
container_title British journal of mathematical & statistical psychology
container_volume 72
creator Ma, Wenchao
Guo, Wenjing
description Cognitive diagnosis models (CDMs) have been used as psychometric tools in educational assessments to estimate students’ proficiency profiles. However, most CDMs assume that all students adopt the same strategy when approaching problems in an assessment, which may not be the case in practice. This study develops a generalized multiple‐strategy CDM for dichotomous response data. The proposed model provides a unified framework to accommodate various condensation rules (e.g., conjunctive, disjunctive, and additive) and different strategy selection approaches (i.e., probability‐matching, over‐matching, and maximizing). Model parameters are estimated using the marginal maximum likelihood estimation via expectation‐maximization algorithm. Simulation studies showed that the parameters of the proposed model can be adequately recovered and that the proposed model was relatively robust to some types of model misspecifications. A set of real data was analysed as well to illustrate the use of the proposed model in practice.
doi_str_mv 10.1111/bmsp.12155
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2207162912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2206129334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4235-e902f1daa6b00392d4962aa735676583928730f1245982d4a618cb17aec1f4733</originalsourceid><addsrcrecordid>eNp90M1KxDAUBeAgijOObnwAKbgRoWNu0iTtUgf_QFFQ1yFt0yFD29SkVebtzdjRhQuzuZD7cbgchI4BzyG8i7zx3RwIMLaDpgQnSZxSELtoijEWMQAmE3Tg_QpjIAzzfTShWDBO02yKyMIuW9ObDx2VRi1b642PGlvq2keVdVEz1L3pah353qleL432h2ivUrXXR9s5Q28316-Lu_jh6fZ-cfkQFwmhLNYZJhWUSvEcY5qRMsk4UUpQxgVnafhJBcUVkIRladgqDmmRg1C6gCoRlM7Q2ZjbOfs-aN_LxvhC17VqtR28JAQL4CQDEujpH7qyg2vDdRvFgWSUJkGdj6pw1nunK9k50yi3loDlpkm5aVJ-NxnwyTZyyBtd_tKf6gKAEXyaWq__iZJXjy_PY-gXO9V7Sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206129334</pqid></control><display><type>article</type><title>Cognitive diagnosis models for multiple strategies</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ma, Wenchao ; Guo, Wenjing</creator><creatorcontrib>Ma, Wenchao ; Guo, Wenjing</creatorcontrib><description>Cognitive diagnosis models (CDMs) have been used as psychometric tools in educational assessments to estimate students’ proficiency profiles. However, most CDMs assume that all students adopt the same strategy when approaching problems in an assessment, which may not be the case in practice. This study develops a generalized multiple‐strategy CDM for dichotomous response data. The proposed model provides a unified framework to accommodate various condensation rules (e.g., conjunctive, disjunctive, and additive) and different strategy selection approaches (i.e., probability‐matching, over‐matching, and maximizing). Model parameters are estimated using the marginal maximum likelihood estimation via expectation‐maximization algorithm. Simulation studies showed that the parameters of the proposed model can be adequately recovered and that the proposed model was relatively robust to some types of model misspecifications. A set of real data was analysed as well to illustrate the use of the proposed model in practice.</description><identifier>ISSN: 0007-1102</identifier><identifier>EISSN: 2044-8317</identifier><identifier>DOI: 10.1111/bmsp.12155</identifier><identifier>PMID: 30756389</identifier><language>eng</language><publisher>England: British Psychological Society</publisher><subject>Algorithms ; Cognition ; cognitive diagnosis ; Computer Simulation ; Diagnosis ; diagnostic classification ; Economic models ; Educational Measurement - methods ; Humans ; item response ; Likelihood Functions ; Mathematical models ; Maximization ; Maximum likelihood estimation ; multiple strategy ; Optimization ; Parameter estimation ; psychometric ; Psychometrics - methods ; Strategy ; Students</subject><ispartof>British journal of mathematical &amp; statistical psychology, 2019-05, Vol.72 (2), p.370-392</ispartof><rights>2019 The British Psychological Society</rights><rights>2019 The British Psychological Society.</rights><rights>Copyright © 2019 The British Psychological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4235-e902f1daa6b00392d4962aa735676583928730f1245982d4a618cb17aec1f4733</citedby><cites>FETCH-LOGICAL-c4235-e902f1daa6b00392d4962aa735676583928730f1245982d4a618cb17aec1f4733</cites><orcidid>0000-0002-6763-0707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbmsp.12155$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbmsp.12155$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30756389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Wenchao</creatorcontrib><creatorcontrib>Guo, Wenjing</creatorcontrib><title>Cognitive diagnosis models for multiple strategies</title><title>British journal of mathematical &amp; statistical psychology</title><addtitle>Br J Math Stat Psychol</addtitle><description>Cognitive diagnosis models (CDMs) have been used as psychometric tools in educational assessments to estimate students’ proficiency profiles. However, most CDMs assume that all students adopt the same strategy when approaching problems in an assessment, which may not be the case in practice. This study develops a generalized multiple‐strategy CDM for dichotomous response data. The proposed model provides a unified framework to accommodate various condensation rules (e.g., conjunctive, disjunctive, and additive) and different strategy selection approaches (i.e., probability‐matching, over‐matching, and maximizing). Model parameters are estimated using the marginal maximum likelihood estimation via expectation‐maximization algorithm. Simulation studies showed that the parameters of the proposed model can be adequately recovered and that the proposed model was relatively robust to some types of model misspecifications. A set of real data was analysed as well to illustrate the use of the proposed model in practice.</description><subject>Algorithms</subject><subject>Cognition</subject><subject>cognitive diagnosis</subject><subject>Computer Simulation</subject><subject>Diagnosis</subject><subject>diagnostic classification</subject><subject>Economic models</subject><subject>Educational Measurement - methods</subject><subject>Humans</subject><subject>item response</subject><subject>Likelihood Functions</subject><subject>Mathematical models</subject><subject>Maximization</subject><subject>Maximum likelihood estimation</subject><subject>multiple strategy</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>psychometric</subject><subject>Psychometrics - methods</subject><subject>Strategy</subject><subject>Students</subject><issn>0007-1102</issn><issn>2044-8317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90M1KxDAUBeAgijOObnwAKbgRoWNu0iTtUgf_QFFQ1yFt0yFD29SkVebtzdjRhQuzuZD7cbgchI4BzyG8i7zx3RwIMLaDpgQnSZxSELtoijEWMQAmE3Tg_QpjIAzzfTShWDBO02yKyMIuW9ObDx2VRi1b642PGlvq2keVdVEz1L3pah353qleL432h2ivUrXXR9s5Q28316-Lu_jh6fZ-cfkQFwmhLNYZJhWUSvEcY5qRMsk4UUpQxgVnafhJBcUVkIRladgqDmmRg1C6gCoRlM7Q2ZjbOfs-aN_LxvhC17VqtR28JAQL4CQDEujpH7qyg2vDdRvFgWSUJkGdj6pw1nunK9k50yi3loDlpkm5aVJ-NxnwyTZyyBtd_tKf6gKAEXyaWq__iZJXjy_PY-gXO9V7Sg</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Ma, Wenchao</creator><creator>Guo, Wenjing</creator><general>British Psychological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6763-0707</orcidid></search><sort><creationdate>201905</creationdate><title>Cognitive diagnosis models for multiple strategies</title><author>Ma, Wenchao ; Guo, Wenjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4235-e902f1daa6b00392d4962aa735676583928730f1245982d4a618cb17aec1f4733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Cognition</topic><topic>cognitive diagnosis</topic><topic>Computer Simulation</topic><topic>Diagnosis</topic><topic>diagnostic classification</topic><topic>Economic models</topic><topic>Educational Measurement - methods</topic><topic>Humans</topic><topic>item response</topic><topic>Likelihood Functions</topic><topic>Mathematical models</topic><topic>Maximization</topic><topic>Maximum likelihood estimation</topic><topic>multiple strategy</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>psychometric</topic><topic>Psychometrics - methods</topic><topic>Strategy</topic><topic>Students</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Wenchao</creatorcontrib><creatorcontrib>Guo, Wenjing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of mathematical &amp; statistical psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Wenchao</au><au>Guo, Wenjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cognitive diagnosis models for multiple strategies</atitle><jtitle>British journal of mathematical &amp; statistical psychology</jtitle><addtitle>Br J Math Stat Psychol</addtitle><date>2019-05</date><risdate>2019</risdate><volume>72</volume><issue>2</issue><spage>370</spage><epage>392</epage><pages>370-392</pages><issn>0007-1102</issn><eissn>2044-8317</eissn><abstract>Cognitive diagnosis models (CDMs) have been used as psychometric tools in educational assessments to estimate students’ proficiency profiles. However, most CDMs assume that all students adopt the same strategy when approaching problems in an assessment, which may not be the case in practice. This study develops a generalized multiple‐strategy CDM for dichotomous response data. The proposed model provides a unified framework to accommodate various condensation rules (e.g., conjunctive, disjunctive, and additive) and different strategy selection approaches (i.e., probability‐matching, over‐matching, and maximizing). Model parameters are estimated using the marginal maximum likelihood estimation via expectation‐maximization algorithm. Simulation studies showed that the parameters of the proposed model can be adequately recovered and that the proposed model was relatively robust to some types of model misspecifications. A set of real data was analysed as well to illustrate the use of the proposed model in practice.</abstract><cop>England</cop><pub>British Psychological Society</pub><pmid>30756389</pmid><doi>10.1111/bmsp.12155</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6763-0707</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0007-1102
ispartof British journal of mathematical & statistical psychology, 2019-05, Vol.72 (2), p.370-392
issn 0007-1102
2044-8317
language eng
recordid cdi_proquest_miscellaneous_2207162912
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Cognition
cognitive diagnosis
Computer Simulation
Diagnosis
diagnostic classification
Economic models
Educational Measurement - methods
Humans
item response
Likelihood Functions
Mathematical models
Maximization
Maximum likelihood estimation
multiple strategy
Optimization
Parameter estimation
psychometric
Psychometrics - methods
Strategy
Students
title Cognitive diagnosis models for multiple strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cognitive%20diagnosis%20models%20for%20multiple%20strategies&rft.jtitle=British%20journal%20of%20mathematical%20&%20statistical%20psychology&rft.au=Ma,%20Wenchao&rft.date=2019-05&rft.volume=72&rft.issue=2&rft.spage=370&rft.epage=392&rft.pages=370-392&rft.issn=0007-1102&rft.eissn=2044-8317&rft_id=info:doi/10.1111/bmsp.12155&rft_dat=%3Cproquest_cross%3E2206129334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206129334&rft_id=info:pmid/30756389&rfr_iscdi=true