In situ synthesis, stabilization and activity of protein-modified gold nanoparticles for biological applications

Herein, we demonstrate the use of lysozyme (Lys) as a model to fabricate a protein carrier system based on gold nanoparticles (AuNPs) via the Layer-by-Layer (LbL) technology. Poly(ethyleneimine) (PEI) and poly(sodium 4-styrenesulfonate) (PSS) were used as cationic and anionic polymers respectively t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials science 2019-05, Vol.7 (6), p.2511-2519
Hauptverfasser: Garcia-Hernandez, Celia, Freese, Allison K, Rodriguez-Mendez, Maria L, Wanekaya, Adam K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2519
container_issue 6
container_start_page 2511
container_title Biomaterials science
container_volume 7
creator Garcia-Hernandez, Celia
Freese, Allison K
Rodriguez-Mendez, Maria L
Wanekaya, Adam K
description Herein, we demonstrate the use of lysozyme (Lys) as a model to fabricate a protein carrier system based on gold nanoparticles (AuNPs) via the Layer-by-Layer (LbL) technology. Poly(ethyleneimine) (PEI) and poly(sodium 4-styrenesulfonate) (PSS) were used as cationic and anionic polymers respectively to grow oppositely charged layers. Mild aqueous conditions were utilized to avoid protein denaturation and activity instead of organic solvents that have been used in other encapsulation systems. Two different strategies were used: (A) lysozyme acting as a reducing and stabilizing agent in the formation of AuNPs at a temperature of 45 ± 2 °C followed by only two subsequent polymeric layers deposited by LbL, and (B) citrate acting as a reducing agent prior to stabilization of the AuNPs by mercaptoundecanoic acid. Dynamic light scattering, UV-vis spectroscopy, IR spectroscopy and transmission electron microscopy were used to characterize the nanoconjugates. Furthermore, the enzymatic activity of the resulting protein/nanoparticle conjugates was evaluated using the bacteria Micrococcus lysodeikticus as a substrate.
doi_str_mv 10.1039/c9bm00129h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2207162507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207162507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-f3bae8ca6b19da2a7855018f84dfd63745b88738797e9fb25c2b26971f1804173</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMobsxd_AMkRxGr-dE2yVGHusHEi55LkiZbJG1qkwrzr3dzc9_lfQ8PDx8vAJcY3WFExb0WqkEIE7E-AWOCcpblPBenx07RCExj_ETbY0ygEp-DEUWi5BjlY9AtWhhdGmDctGltoou3MCapnHc_MrnQQtnWUOrkvl3awGBh14dkXJs1oXbWmRqugq9hK9vQyT457U2ENvRQueDDymnpoew6vy07XbwAZ1b6aKaHnICP56f32Txbvr0sZg_LTNOCpsxSJQ3XslRY1JJIxosCYW55Xtu6pCwvFOeMciaYEVaRQhNFSsGwxRzlmNEJuN57t_9-DSamqnFRG-9la8IQK0IQwyUp0A692aO6DzH2xlZd7xrZbyqMqt3I1Uw8vv6NPN_CVwfvoBpTH9H_SekvqC94vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207162507</pqid></control><display><type>article</type><title>In situ synthesis, stabilization and activity of protein-modified gold nanoparticles for biological applications</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Garcia-Hernandez, Celia ; Freese, Allison K ; Rodriguez-Mendez, Maria L ; Wanekaya, Adam K</creator><creatorcontrib>Garcia-Hernandez, Celia ; Freese, Allison K ; Rodriguez-Mendez, Maria L ; Wanekaya, Adam K</creatorcontrib><description>Herein, we demonstrate the use of lysozyme (Lys) as a model to fabricate a protein carrier system based on gold nanoparticles (AuNPs) via the Layer-by-Layer (LbL) technology. Poly(ethyleneimine) (PEI) and poly(sodium 4-styrenesulfonate) (PSS) were used as cationic and anionic polymers respectively to grow oppositely charged layers. Mild aqueous conditions were utilized to avoid protein denaturation and activity instead of organic solvents that have been used in other encapsulation systems. Two different strategies were used: (A) lysozyme acting as a reducing and stabilizing agent in the formation of AuNPs at a temperature of 45 ± 2 °C followed by only two subsequent polymeric layers deposited by LbL, and (B) citrate acting as a reducing agent prior to stabilization of the AuNPs by mercaptoundecanoic acid. Dynamic light scattering, UV-vis spectroscopy, IR spectroscopy and transmission electron microscopy were used to characterize the nanoconjugates. Furthermore, the enzymatic activity of the resulting protein/nanoparticle conjugates was evaluated using the bacteria Micrococcus lysodeikticus as a substrate.</description><identifier>ISSN: 2047-4830</identifier><identifier>EISSN: 2047-4849</identifier><identifier>DOI: 10.1039/c9bm00129h</identifier><identifier>PMID: 30968104</identifier><language>eng</language><publisher>England</publisher><subject>Biocompatible Materials - chemical synthesis ; Biocompatible Materials - chemistry ; Chemistry Techniques, Synthetic ; Citric Acid - chemistry ; Gold - chemistry ; Metal Nanoparticles - chemistry ; Micrococcus - enzymology ; Models, Molecular ; Molecular Conformation ; Muramidase - chemistry ; Muramidase - metabolism ; Polyethyleneimine - chemistry ; Polystyrenes - chemistry ; Temperature</subject><ispartof>Biomaterials science, 2019-05, Vol.7 (6), p.2511-2519</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-f3bae8ca6b19da2a7855018f84dfd63745b88738797e9fb25c2b26971f1804173</citedby><cites>FETCH-LOGICAL-c353t-f3bae8ca6b19da2a7855018f84dfd63745b88738797e9fb25c2b26971f1804173</cites><orcidid>0000-0002-6885-6951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30968104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia-Hernandez, Celia</creatorcontrib><creatorcontrib>Freese, Allison K</creatorcontrib><creatorcontrib>Rodriguez-Mendez, Maria L</creatorcontrib><creatorcontrib>Wanekaya, Adam K</creatorcontrib><title>In situ synthesis, stabilization and activity of protein-modified gold nanoparticles for biological applications</title><title>Biomaterials science</title><addtitle>Biomater Sci</addtitle><description>Herein, we demonstrate the use of lysozyme (Lys) as a model to fabricate a protein carrier system based on gold nanoparticles (AuNPs) via the Layer-by-Layer (LbL) technology. Poly(ethyleneimine) (PEI) and poly(sodium 4-styrenesulfonate) (PSS) were used as cationic and anionic polymers respectively to grow oppositely charged layers. Mild aqueous conditions were utilized to avoid protein denaturation and activity instead of organic solvents that have been used in other encapsulation systems. Two different strategies were used: (A) lysozyme acting as a reducing and stabilizing agent in the formation of AuNPs at a temperature of 45 ± 2 °C followed by only two subsequent polymeric layers deposited by LbL, and (B) citrate acting as a reducing agent prior to stabilization of the AuNPs by mercaptoundecanoic acid. Dynamic light scattering, UV-vis spectroscopy, IR spectroscopy and transmission electron microscopy were used to characterize the nanoconjugates. Furthermore, the enzymatic activity of the resulting protein/nanoparticle conjugates was evaluated using the bacteria Micrococcus lysodeikticus as a substrate.</description><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biocompatible Materials - chemistry</subject><subject>Chemistry Techniques, Synthetic</subject><subject>Citric Acid - chemistry</subject><subject>Gold - chemistry</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Micrococcus - enzymology</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Muramidase - chemistry</subject><subject>Muramidase - metabolism</subject><subject>Polyethyleneimine - chemistry</subject><subject>Polystyrenes - chemistry</subject><subject>Temperature</subject><issn>2047-4830</issn><issn>2047-4849</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kM9LwzAYhoMobsxd_AMkRxGr-dE2yVGHusHEi55LkiZbJG1qkwrzr3dzc9_lfQ8PDx8vAJcY3WFExb0WqkEIE7E-AWOCcpblPBenx07RCExj_ETbY0ygEp-DEUWi5BjlY9AtWhhdGmDctGltoou3MCapnHc_MrnQQtnWUOrkvl3awGBh14dkXJs1oXbWmRqugq9hK9vQyT457U2ENvRQueDDymnpoew6vy07XbwAZ1b6aKaHnICP56f32Txbvr0sZg_LTNOCpsxSJQ3XslRY1JJIxosCYW55Xtu6pCwvFOeMciaYEVaRQhNFSsGwxRzlmNEJuN57t_9-DSamqnFRG-9la8IQK0IQwyUp0A692aO6DzH2xlZd7xrZbyqMqt3I1Uw8vv6NPN_CVwfvoBpTH9H_SekvqC94vw</recordid><startdate>20190528</startdate><enddate>20190528</enddate><creator>Garcia-Hernandez, Celia</creator><creator>Freese, Allison K</creator><creator>Rodriguez-Mendez, Maria L</creator><creator>Wanekaya, Adam K</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6885-6951</orcidid></search><sort><creationdate>20190528</creationdate><title>In situ synthesis, stabilization and activity of protein-modified gold nanoparticles for biological applications</title><author>Garcia-Hernandez, Celia ; Freese, Allison K ; Rodriguez-Mendez, Maria L ; Wanekaya, Adam K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-f3bae8ca6b19da2a7855018f84dfd63745b88738797e9fb25c2b26971f1804173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biocompatible Materials - chemistry</topic><topic>Chemistry Techniques, Synthetic</topic><topic>Citric Acid - chemistry</topic><topic>Gold - chemistry</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Micrococcus - enzymology</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Muramidase - chemistry</topic><topic>Muramidase - metabolism</topic><topic>Polyethyleneimine - chemistry</topic><topic>Polystyrenes - chemistry</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Hernandez, Celia</creatorcontrib><creatorcontrib>Freese, Allison K</creatorcontrib><creatorcontrib>Rodriguez-Mendez, Maria L</creatorcontrib><creatorcontrib>Wanekaya, Adam K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia-Hernandez, Celia</au><au>Freese, Allison K</au><au>Rodriguez-Mendez, Maria L</au><au>Wanekaya, Adam K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ synthesis, stabilization and activity of protein-modified gold nanoparticles for biological applications</atitle><jtitle>Biomaterials science</jtitle><addtitle>Biomater Sci</addtitle><date>2019-05-28</date><risdate>2019</risdate><volume>7</volume><issue>6</issue><spage>2511</spage><epage>2519</epage><pages>2511-2519</pages><issn>2047-4830</issn><eissn>2047-4849</eissn><abstract>Herein, we demonstrate the use of lysozyme (Lys) as a model to fabricate a protein carrier system based on gold nanoparticles (AuNPs) via the Layer-by-Layer (LbL) technology. Poly(ethyleneimine) (PEI) and poly(sodium 4-styrenesulfonate) (PSS) were used as cationic and anionic polymers respectively to grow oppositely charged layers. Mild aqueous conditions were utilized to avoid protein denaturation and activity instead of organic solvents that have been used in other encapsulation systems. Two different strategies were used: (A) lysozyme acting as a reducing and stabilizing agent in the formation of AuNPs at a temperature of 45 ± 2 °C followed by only two subsequent polymeric layers deposited by LbL, and (B) citrate acting as a reducing agent prior to stabilization of the AuNPs by mercaptoundecanoic acid. Dynamic light scattering, UV-vis spectroscopy, IR spectroscopy and transmission electron microscopy were used to characterize the nanoconjugates. Furthermore, the enzymatic activity of the resulting protein/nanoparticle conjugates was evaluated using the bacteria Micrococcus lysodeikticus as a substrate.</abstract><cop>England</cop><pmid>30968104</pmid><doi>10.1039/c9bm00129h</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6885-6951</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2047-4830
ispartof Biomaterials science, 2019-05, Vol.7 (6), p.2511-2519
issn 2047-4830
2047-4849
language eng
recordid cdi_proquest_miscellaneous_2207162507
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Biocompatible Materials - chemical synthesis
Biocompatible Materials - chemistry
Chemistry Techniques, Synthetic
Citric Acid - chemistry
Gold - chemistry
Metal Nanoparticles - chemistry
Micrococcus - enzymology
Models, Molecular
Molecular Conformation
Muramidase - chemistry
Muramidase - metabolism
Polyethyleneimine - chemistry
Polystyrenes - chemistry
Temperature
title In situ synthesis, stabilization and activity of protein-modified gold nanoparticles for biological applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20synthesis,%20stabilization%20and%20activity%20of%20protein-modified%20gold%20nanoparticles%20for%20biological%20applications&rft.jtitle=Biomaterials%20science&rft.au=Garcia-Hernandez,%20Celia&rft.date=2019-05-28&rft.volume=7&rft.issue=6&rft.spage=2511&rft.epage=2519&rft.pages=2511-2519&rft.issn=2047-4830&rft.eissn=2047-4849&rft_id=info:doi/10.1039/c9bm00129h&rft_dat=%3Cproquest_cross%3E2207162507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207162507&rft_id=info:pmid/30968104&rfr_iscdi=true