Formation of Twinned Graphene Polycrystals

Liquid metals have been widely used as substrates to grow graphene and other 2D materials. On a homogeneous and isotropic liquid surface, a polycrystalline 2D material is formed by coalescence of many randomly nucleated single‐crystal islands, and as a result, the domains in a polycrystal are expect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2019-06, Vol.58 (23), p.7723-7727
Hauptverfasser: Dong, Jichen, Geng, Dechao, Liu, Fengning, Ding, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7727
container_issue 23
container_start_page 7723
container_title Angewandte Chemie International Edition
container_volume 58
creator Dong, Jichen
Geng, Dechao
Liu, Fengning
Ding, Feng
description Liquid metals have been widely used as substrates to grow graphene and other 2D materials. On a homogeneous and isotropic liquid surface, a polycrystalline 2D material is formed by coalescence of many randomly nucleated single‐crystal islands, and as a result, the domains in a polycrystal are expected to be randomly aligned. Here, we report the unexpected finding that only 30°‐twinned graphene polycrystals are grown on a liquid Cu surface. Atomic simulations confirm that the unique domain alignment in graphene polycrystals is due to the free rotation of graphene islands on the liquid Cu surface and the highly stable 30°‐grain boundaries in graphene. In‐depth analysis predicts 30 types of possible 30°‐twinned graphene polycrystals and 27 of them are observed. The revealed formation mechanism of graphene polycrystals on a liquid Cu surface deepens our fundamental understanding on polycrystal growth and could serve as a guideline for the controlled synthesis of 2D materials. Lucky twins: Based on a theoretical analysis of graphene chemical vapor deposition (CVD) growth on a liquid Cu surface, 30 types of twinned graphene polycrystals are predicted and most of them are observed experimentally.
doi_str_mv 10.1002/anie.201902441
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2207158526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207158526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4101-db77503517a662a1617095a965b6331ab3855fa4f252112e591449ea516a4fa93</originalsourceid><addsrcrecordid>eNqF0MFLwzAUBvAgipvTq0cpeBGhMy9pkuY4xjYHQz3Mc0i7FDvaZiYro__9MjYnePH0wuOXj8eH0D3gIWBMXnRTmiHBIDFJErhAfWAEYioEvQzvhNJYpAx66Mb7dfBpivk16lEseVinffQ8ta7W29I2kS2i5a5sGrOKZk5vvkxjog9bdbnr_FZX_hZdFWGYu9McoM_pZDl-jRfvs_l4tIjzBDDEq0wIhikDoTknGjgILJmWnGWcUtAZTRkrdFKQcCkQwyQkiTSaAQ9LLekAPR1zN85-t8ZvVV363FSVboxtvSIEC2ApIzzQxz90bVvXhOuCIpIxoJQFNTyq3FnvnSnUxpW1dp0CrA4tqkOL6txi-PBwim2z2qzO_Ke2AOQR7MrKdP_EqdHbfPIbvge6Bnqr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229551335</pqid></control><display><type>article</type><title>Formation of Twinned Graphene Polycrystals</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Dong, Jichen ; Geng, Dechao ; Liu, Fengning ; Ding, Feng</creator><creatorcontrib>Dong, Jichen ; Geng, Dechao ; Liu, Fengning ; Ding, Feng</creatorcontrib><description>Liquid metals have been widely used as substrates to grow graphene and other 2D materials. On a homogeneous and isotropic liquid surface, a polycrystalline 2D material is formed by coalescence of many randomly nucleated single‐crystal islands, and as a result, the domains in a polycrystal are expected to be randomly aligned. Here, we report the unexpected finding that only 30°‐twinned graphene polycrystals are grown on a liquid Cu surface. Atomic simulations confirm that the unique domain alignment in graphene polycrystals is due to the free rotation of graphene islands on the liquid Cu surface and the highly stable 30°‐grain boundaries in graphene. In‐depth analysis predicts 30 types of possible 30°‐twinned graphene polycrystals and 27 of them are observed. The revealed formation mechanism of graphene polycrystals on a liquid Cu surface deepens our fundamental understanding on polycrystal growth and could serve as a guideline for the controlled synthesis of 2D materials. Lucky twins: Based on a theoretical analysis of graphene chemical vapor deposition (CVD) growth on a liquid Cu surface, 30 types of twinned graphene polycrystals are predicted and most of them are observed experimentally.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201902441</identifier><identifier>PMID: 30968518</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>chemical vapor deposition ; Coalescence ; Coalescing ; Copper ; Domains ; Grain boundaries ; Graphene ; Islands ; liquid Cu ; Liquid metals ; Liquid surfaces ; Metals ; Polycrystals ; Substrates ; Two dimensional materials</subject><ispartof>Angewandte Chemie International Edition, 2019-06, Vol.58 (23), p.7723-7727</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4101-db77503517a662a1617095a965b6331ab3855fa4f252112e591449ea516a4fa93</citedby><cites>FETCH-LOGICAL-c4101-db77503517a662a1617095a965b6331ab3855fa4f252112e591449ea516a4fa93</cites><orcidid>0000-0001-9153-9279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201902441$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201902441$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30968518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Jichen</creatorcontrib><creatorcontrib>Geng, Dechao</creatorcontrib><creatorcontrib>Liu, Fengning</creatorcontrib><creatorcontrib>Ding, Feng</creatorcontrib><title>Formation of Twinned Graphene Polycrystals</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Liquid metals have been widely used as substrates to grow graphene and other 2D materials. On a homogeneous and isotropic liquid surface, a polycrystalline 2D material is formed by coalescence of many randomly nucleated single‐crystal islands, and as a result, the domains in a polycrystal are expected to be randomly aligned. Here, we report the unexpected finding that only 30°‐twinned graphene polycrystals are grown on a liquid Cu surface. Atomic simulations confirm that the unique domain alignment in graphene polycrystals is due to the free rotation of graphene islands on the liquid Cu surface and the highly stable 30°‐grain boundaries in graphene. In‐depth analysis predicts 30 types of possible 30°‐twinned graphene polycrystals and 27 of them are observed. The revealed formation mechanism of graphene polycrystals on a liquid Cu surface deepens our fundamental understanding on polycrystal growth and could serve as a guideline for the controlled synthesis of 2D materials. Lucky twins: Based on a theoretical analysis of graphene chemical vapor deposition (CVD) growth on a liquid Cu surface, 30 types of twinned graphene polycrystals are predicted and most of them are observed experimentally.</description><subject>chemical vapor deposition</subject><subject>Coalescence</subject><subject>Coalescing</subject><subject>Copper</subject><subject>Domains</subject><subject>Grain boundaries</subject><subject>Graphene</subject><subject>Islands</subject><subject>liquid Cu</subject><subject>Liquid metals</subject><subject>Liquid surfaces</subject><subject>Metals</subject><subject>Polycrystals</subject><subject>Substrates</subject><subject>Two dimensional materials</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqF0MFLwzAUBvAgipvTq0cpeBGhMy9pkuY4xjYHQz3Mc0i7FDvaZiYro__9MjYnePH0wuOXj8eH0D3gIWBMXnRTmiHBIDFJErhAfWAEYioEvQzvhNJYpAx66Mb7dfBpivk16lEseVinffQ8ta7W29I2kS2i5a5sGrOKZk5vvkxjog9bdbnr_FZX_hZdFWGYu9McoM_pZDl-jRfvs_l4tIjzBDDEq0wIhikDoTknGjgILJmWnGWcUtAZTRkrdFKQcCkQwyQkiTSaAQ9LLekAPR1zN85-t8ZvVV363FSVboxtvSIEC2ApIzzQxz90bVvXhOuCIpIxoJQFNTyq3FnvnSnUxpW1dp0CrA4tqkOL6txi-PBwim2z2qzO_Ke2AOQR7MrKdP_EqdHbfPIbvge6Bnqr</recordid><startdate>20190603</startdate><enddate>20190603</enddate><creator>Dong, Jichen</creator><creator>Geng, Dechao</creator><creator>Liu, Fengning</creator><creator>Ding, Feng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9153-9279</orcidid></search><sort><creationdate>20190603</creationdate><title>Formation of Twinned Graphene Polycrystals</title><author>Dong, Jichen ; Geng, Dechao ; Liu, Fengning ; Ding, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4101-db77503517a662a1617095a965b6331ab3855fa4f252112e591449ea516a4fa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>chemical vapor deposition</topic><topic>Coalescence</topic><topic>Coalescing</topic><topic>Copper</topic><topic>Domains</topic><topic>Grain boundaries</topic><topic>Graphene</topic><topic>Islands</topic><topic>liquid Cu</topic><topic>Liquid metals</topic><topic>Liquid surfaces</topic><topic>Metals</topic><topic>Polycrystals</topic><topic>Substrates</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Jichen</creatorcontrib><creatorcontrib>Geng, Dechao</creatorcontrib><creatorcontrib>Liu, Fengning</creatorcontrib><creatorcontrib>Ding, Feng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Jichen</au><au>Geng, Dechao</au><au>Liu, Fengning</au><au>Ding, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of Twinned Graphene Polycrystals</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2019-06-03</date><risdate>2019</risdate><volume>58</volume><issue>23</issue><spage>7723</spage><epage>7727</epage><pages>7723-7727</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Liquid metals have been widely used as substrates to grow graphene and other 2D materials. On a homogeneous and isotropic liquid surface, a polycrystalline 2D material is formed by coalescence of many randomly nucleated single‐crystal islands, and as a result, the domains in a polycrystal are expected to be randomly aligned. Here, we report the unexpected finding that only 30°‐twinned graphene polycrystals are grown on a liquid Cu surface. Atomic simulations confirm that the unique domain alignment in graphene polycrystals is due to the free rotation of graphene islands on the liquid Cu surface and the highly stable 30°‐grain boundaries in graphene. In‐depth analysis predicts 30 types of possible 30°‐twinned graphene polycrystals and 27 of them are observed. The revealed formation mechanism of graphene polycrystals on a liquid Cu surface deepens our fundamental understanding on polycrystal growth and could serve as a guideline for the controlled synthesis of 2D materials. Lucky twins: Based on a theoretical analysis of graphene chemical vapor deposition (CVD) growth on a liquid Cu surface, 30 types of twinned graphene polycrystals are predicted and most of them are observed experimentally.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30968518</pmid><doi>10.1002/anie.201902441</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-9153-9279</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2019-06, Vol.58 (23), p.7723-7727
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2207158526
source Wiley Online Library - AutoHoldings Journals
subjects chemical vapor deposition
Coalescence
Coalescing
Copper
Domains
Grain boundaries
Graphene
Islands
liquid Cu
Liquid metals
Liquid surfaces
Metals
Polycrystals
Substrates
Two dimensional materials
title Formation of Twinned Graphene Polycrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20Twinned%20Graphene%20Polycrystals&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Dong,%20Jichen&rft.date=2019-06-03&rft.volume=58&rft.issue=23&rft.spage=7723&rft.epage=7727&rft.pages=7723-7727&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201902441&rft_dat=%3Cproquest_cross%3E2207158526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229551335&rft_id=info:pmid/30968518&rfr_iscdi=true