Formation of Twinned Graphene Polycrystals
Liquid metals have been widely used as substrates to grow graphene and other 2D materials. On a homogeneous and isotropic liquid surface, a polycrystalline 2D material is formed by coalescence of many randomly nucleated single‐crystal islands, and as a result, the domains in a polycrystal are expect...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2019-06, Vol.58 (23), p.7723-7727 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7727 |
---|---|
container_issue | 23 |
container_start_page | 7723 |
container_title | Angewandte Chemie International Edition |
container_volume | 58 |
creator | Dong, Jichen Geng, Dechao Liu, Fengning Ding, Feng |
description | Liquid metals have been widely used as substrates to grow graphene and other 2D materials. On a homogeneous and isotropic liquid surface, a polycrystalline 2D material is formed by coalescence of many randomly nucleated single‐crystal islands, and as a result, the domains in a polycrystal are expected to be randomly aligned. Here, we report the unexpected finding that only 30°‐twinned graphene polycrystals are grown on a liquid Cu surface. Atomic simulations confirm that the unique domain alignment in graphene polycrystals is due to the free rotation of graphene islands on the liquid Cu surface and the highly stable 30°‐grain boundaries in graphene. In‐depth analysis predicts 30 types of possible 30°‐twinned graphene polycrystals and 27 of them are observed. The revealed formation mechanism of graphene polycrystals on a liquid Cu surface deepens our fundamental understanding on polycrystal growth and could serve as a guideline for the controlled synthesis of 2D materials.
Lucky twins: Based on a theoretical analysis of graphene chemical vapor deposition (CVD) growth on a liquid Cu surface, 30 types of twinned graphene polycrystals are predicted and most of them are observed experimentally. |
doi_str_mv | 10.1002/anie.201902441 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2207158526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207158526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4101-db77503517a662a1617095a965b6331ab3855fa4f252112e591449ea516a4fa93</originalsourceid><addsrcrecordid>eNqF0MFLwzAUBvAgipvTq0cpeBGhMy9pkuY4xjYHQz3Mc0i7FDvaZiYro__9MjYnePH0wuOXj8eH0D3gIWBMXnRTmiHBIDFJErhAfWAEYioEvQzvhNJYpAx66Mb7dfBpivk16lEseVinffQ8ta7W29I2kS2i5a5sGrOKZk5vvkxjog9bdbnr_FZX_hZdFWGYu9McoM_pZDl-jRfvs_l4tIjzBDDEq0wIhikDoTknGjgILJmWnGWcUtAZTRkrdFKQcCkQwyQkiTSaAQ9LLekAPR1zN85-t8ZvVV363FSVboxtvSIEC2ApIzzQxz90bVvXhOuCIpIxoJQFNTyq3FnvnSnUxpW1dp0CrA4tqkOL6txi-PBwim2z2qzO_Ke2AOQR7MrKdP_EqdHbfPIbvge6Bnqr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229551335</pqid></control><display><type>article</type><title>Formation of Twinned Graphene Polycrystals</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Dong, Jichen ; Geng, Dechao ; Liu, Fengning ; Ding, Feng</creator><creatorcontrib>Dong, Jichen ; Geng, Dechao ; Liu, Fengning ; Ding, Feng</creatorcontrib><description>Liquid metals have been widely used as substrates to grow graphene and other 2D materials. On a homogeneous and isotropic liquid surface, a polycrystalline 2D material is formed by coalescence of many randomly nucleated single‐crystal islands, and as a result, the domains in a polycrystal are expected to be randomly aligned. Here, we report the unexpected finding that only 30°‐twinned graphene polycrystals are grown on a liquid Cu surface. Atomic simulations confirm that the unique domain alignment in graphene polycrystals is due to the free rotation of graphene islands on the liquid Cu surface and the highly stable 30°‐grain boundaries in graphene. In‐depth analysis predicts 30 types of possible 30°‐twinned graphene polycrystals and 27 of them are observed. The revealed formation mechanism of graphene polycrystals on a liquid Cu surface deepens our fundamental understanding on polycrystal growth and could serve as a guideline for the controlled synthesis of 2D materials.
Lucky twins: Based on a theoretical analysis of graphene chemical vapor deposition (CVD) growth on a liquid Cu surface, 30 types of twinned graphene polycrystals are predicted and most of them are observed experimentally.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201902441</identifier><identifier>PMID: 30968518</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>chemical vapor deposition ; Coalescence ; Coalescing ; Copper ; Domains ; Grain boundaries ; Graphene ; Islands ; liquid Cu ; Liquid metals ; Liquid surfaces ; Metals ; Polycrystals ; Substrates ; Two dimensional materials</subject><ispartof>Angewandte Chemie International Edition, 2019-06, Vol.58 (23), p.7723-7727</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4101-db77503517a662a1617095a965b6331ab3855fa4f252112e591449ea516a4fa93</citedby><cites>FETCH-LOGICAL-c4101-db77503517a662a1617095a965b6331ab3855fa4f252112e591449ea516a4fa93</cites><orcidid>0000-0001-9153-9279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201902441$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201902441$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30968518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Jichen</creatorcontrib><creatorcontrib>Geng, Dechao</creatorcontrib><creatorcontrib>Liu, Fengning</creatorcontrib><creatorcontrib>Ding, Feng</creatorcontrib><title>Formation of Twinned Graphene Polycrystals</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Liquid metals have been widely used as substrates to grow graphene and other 2D materials. On a homogeneous and isotropic liquid surface, a polycrystalline 2D material is formed by coalescence of many randomly nucleated single‐crystal islands, and as a result, the domains in a polycrystal are expected to be randomly aligned. Here, we report the unexpected finding that only 30°‐twinned graphene polycrystals are grown on a liquid Cu surface. Atomic simulations confirm that the unique domain alignment in graphene polycrystals is due to the free rotation of graphene islands on the liquid Cu surface and the highly stable 30°‐grain boundaries in graphene. In‐depth analysis predicts 30 types of possible 30°‐twinned graphene polycrystals and 27 of them are observed. The revealed formation mechanism of graphene polycrystals on a liquid Cu surface deepens our fundamental understanding on polycrystal growth and could serve as a guideline for the controlled synthesis of 2D materials.
Lucky twins: Based on a theoretical analysis of graphene chemical vapor deposition (CVD) growth on a liquid Cu surface, 30 types of twinned graphene polycrystals are predicted and most of them are observed experimentally.</description><subject>chemical vapor deposition</subject><subject>Coalescence</subject><subject>Coalescing</subject><subject>Copper</subject><subject>Domains</subject><subject>Grain boundaries</subject><subject>Graphene</subject><subject>Islands</subject><subject>liquid Cu</subject><subject>Liquid metals</subject><subject>Liquid surfaces</subject><subject>Metals</subject><subject>Polycrystals</subject><subject>Substrates</subject><subject>Two dimensional materials</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqF0MFLwzAUBvAgipvTq0cpeBGhMy9pkuY4xjYHQz3Mc0i7FDvaZiYro__9MjYnePH0wuOXj8eH0D3gIWBMXnRTmiHBIDFJErhAfWAEYioEvQzvhNJYpAx66Mb7dfBpivk16lEseVinffQ8ta7W29I2kS2i5a5sGrOKZk5vvkxjog9bdbnr_FZX_hZdFWGYu9McoM_pZDl-jRfvs_l4tIjzBDDEq0wIhikDoTknGjgILJmWnGWcUtAZTRkrdFKQcCkQwyQkiTSaAQ9LLekAPR1zN85-t8ZvVV363FSVboxtvSIEC2ApIzzQxz90bVvXhOuCIpIxoJQFNTyq3FnvnSnUxpW1dp0CrA4tqkOL6txi-PBwim2z2qzO_Ke2AOQR7MrKdP_EqdHbfPIbvge6Bnqr</recordid><startdate>20190603</startdate><enddate>20190603</enddate><creator>Dong, Jichen</creator><creator>Geng, Dechao</creator><creator>Liu, Fengning</creator><creator>Ding, Feng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9153-9279</orcidid></search><sort><creationdate>20190603</creationdate><title>Formation of Twinned Graphene Polycrystals</title><author>Dong, Jichen ; Geng, Dechao ; Liu, Fengning ; Ding, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4101-db77503517a662a1617095a965b6331ab3855fa4f252112e591449ea516a4fa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>chemical vapor deposition</topic><topic>Coalescence</topic><topic>Coalescing</topic><topic>Copper</topic><topic>Domains</topic><topic>Grain boundaries</topic><topic>Graphene</topic><topic>Islands</topic><topic>liquid Cu</topic><topic>Liquid metals</topic><topic>Liquid surfaces</topic><topic>Metals</topic><topic>Polycrystals</topic><topic>Substrates</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Jichen</creatorcontrib><creatorcontrib>Geng, Dechao</creatorcontrib><creatorcontrib>Liu, Fengning</creatorcontrib><creatorcontrib>Ding, Feng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Jichen</au><au>Geng, Dechao</au><au>Liu, Fengning</au><au>Ding, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of Twinned Graphene Polycrystals</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2019-06-03</date><risdate>2019</risdate><volume>58</volume><issue>23</issue><spage>7723</spage><epage>7727</epage><pages>7723-7727</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Liquid metals have been widely used as substrates to grow graphene and other 2D materials. On a homogeneous and isotropic liquid surface, a polycrystalline 2D material is formed by coalescence of many randomly nucleated single‐crystal islands, and as a result, the domains in a polycrystal are expected to be randomly aligned. Here, we report the unexpected finding that only 30°‐twinned graphene polycrystals are grown on a liquid Cu surface. Atomic simulations confirm that the unique domain alignment in graphene polycrystals is due to the free rotation of graphene islands on the liquid Cu surface and the highly stable 30°‐grain boundaries in graphene. In‐depth analysis predicts 30 types of possible 30°‐twinned graphene polycrystals and 27 of them are observed. The revealed formation mechanism of graphene polycrystals on a liquid Cu surface deepens our fundamental understanding on polycrystal growth and could serve as a guideline for the controlled synthesis of 2D materials.
Lucky twins: Based on a theoretical analysis of graphene chemical vapor deposition (CVD) growth on a liquid Cu surface, 30 types of twinned graphene polycrystals are predicted and most of them are observed experimentally.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30968518</pmid><doi>10.1002/anie.201902441</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-9153-9279</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2019-06, Vol.58 (23), p.7723-7727 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2207158526 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | chemical vapor deposition Coalescence Coalescing Copper Domains Grain boundaries Graphene Islands liquid Cu Liquid metals Liquid surfaces Metals Polycrystals Substrates Two dimensional materials |
title | Formation of Twinned Graphene Polycrystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20Twinned%20Graphene%20Polycrystals&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Dong,%20Jichen&rft.date=2019-06-03&rft.volume=58&rft.issue=23&rft.spage=7723&rft.epage=7727&rft.pages=7723-7727&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201902441&rft_dat=%3Cproquest_cross%3E2207158526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229551335&rft_id=info:pmid/30968518&rfr_iscdi=true |