Photoinduced Proton Transfer of GFP-Inspired Fluorescent Superphotoacids: Principles and Design

Proton transfer remains one of the most fundamental processes in chemistry and biology. Superphotoacids provide an excellent platform to delineate the excited-state proton transfer (ESPT) mechanism on ultrafast time scales and enable one to precisely control photoacidity and other pertinent function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2019-05, Vol.123 (17), p.3804-3821
Hauptverfasser: Chen, Cheng, Zhu, Liangdong, Baranov, Mikhail S, Tang, Longteng, Baleeva, Nadezhda S, Smirnov, Alexander Yu, Yampolsky, Ilia V, Solntsev, Kyril M, Fang, Chong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3821
container_issue 17
container_start_page 3804
container_title The journal of physical chemistry. B
container_volume 123
creator Chen, Cheng
Zhu, Liangdong
Baranov, Mikhail S
Tang, Longteng
Baleeva, Nadezhda S
Smirnov, Alexander Yu
Yampolsky, Ilia V
Solntsev, Kyril M
Fang, Chong
description Proton transfer remains one of the most fundamental processes in chemistry and biology. Superphotoacids provide an excellent platform to delineate the excited-state proton transfer (ESPT) mechanism on ultrafast time scales and enable one to precisely control photoacidity and other pertinent functionalities such as fluorescence. We modified the GFP core (p-HBDI chromophore) into two series of highly fluorescent photoacids by fluorinating the phenolic ring and conformationally locking the backbone (i.e., biomimetics). The trifluorinated derivatives, M3F and P3F, represent two of the strongest superphotoacids with pK a* values of –5.0 and –5.5, respectively, and they can efficiently transfer a proton to organic solvents like methanol. Tunable femtosecond stimulated Raman spectroscopy (FSRS) and femtosecond transient absorption (fs-TA) were employed to dissect the ESPT of M3F and P3F in methanol, particularly with structural dynamics information. By virtue of resonantly enhanced FSRS signal and global analysis of fs-TA spectra, we revealed an inhomogeneous ESPT mechanism consisting of three parallel routes following the initial small-scale proton motion and contact ion-pair formation within ∼300 fs: The first route consists of ultrafast protolytic dissociation facilitated by the pre-existing, largely optimized H-bonding chain; the second route is limited by solvent reorientation that establishes a suitable H-bonding wire for proton separation; the third route is controlled by rotational diffusion that requires rotation of the anisotropically reactive photoacid in a bulky solvent with a complex H-bonding structure over larger distances. Furthermore, we provided new design principles of enhancing photoacidity in a synergistic manner: incorporating electron-withdrawing groups into proximal (often as “donor”) and distal (often as “acceptor”) ring moieties of the dissociative hydroxyl group to lower the ground-state pK a and increase the ΔpK a, respectively.
doi_str_mv 10.1021/acs.jpcb.9b03201
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2207157645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207157645</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-e0b00b1f68fe7217bb8e51a4900dcccf8450fec808496b5b9a4f8ca91a0d29e73</originalsourceid><addsrcrecordid>eNp1kM9PwyAYhonROJ3ePZkePdj50Z_Um5luLlniEueZAP3QLh1UaA_-9zI3vXkgQHifNx8PIVcUJhQSeieUn2w6JSeVhDQBekTOaJ5AHFZ5fDgXFIoROfd-A5DkCStOySiFqsgqlp8RvvqwvW1MPSiso5ULFxOtnTBeo4usjuazVbwwvmtceJ-1g3XoFZo-eh06dN2OFqqp_X2AG6OarkUfCVNHj-ibd3NBTrRoPV4e9jF5mz2tp8_x8mW-mD4sY5GmRR8jSABJdcE0lgktpWSYU5FVALVSSrMsB42KAcuqQuayEplmSlRUQJ1UWKZjcrPv7Zz9HND3fNuEOdtWGLSD50kwQvOyyPIQhX1UOeu9Q80712yF--IU-E4rD1r5Tis_aA3I9aF9kFus_4BfjyFwuw_8oHZwJnz2_75v_w2E7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207157645</pqid></control><display><type>article</type><title>Photoinduced Proton Transfer of GFP-Inspired Fluorescent Superphotoacids: Principles and Design</title><source>ACS Publications</source><creator>Chen, Cheng ; Zhu, Liangdong ; Baranov, Mikhail S ; Tang, Longteng ; Baleeva, Nadezhda S ; Smirnov, Alexander Yu ; Yampolsky, Ilia V ; Solntsev, Kyril M ; Fang, Chong</creator><creatorcontrib>Chen, Cheng ; Zhu, Liangdong ; Baranov, Mikhail S ; Tang, Longteng ; Baleeva, Nadezhda S ; Smirnov, Alexander Yu ; Yampolsky, Ilia V ; Solntsev, Kyril M ; Fang, Chong</creatorcontrib><description>Proton transfer remains one of the most fundamental processes in chemistry and biology. Superphotoacids provide an excellent platform to delineate the excited-state proton transfer (ESPT) mechanism on ultrafast time scales and enable one to precisely control photoacidity and other pertinent functionalities such as fluorescence. We modified the GFP core (p-HBDI chromophore) into two series of highly fluorescent photoacids by fluorinating the phenolic ring and conformationally locking the backbone (i.e., biomimetics). The trifluorinated derivatives, M3F and P3F, represent two of the strongest superphotoacids with pK a* values of –5.0 and –5.5, respectively, and they can efficiently transfer a proton to organic solvents like methanol. Tunable femtosecond stimulated Raman spectroscopy (FSRS) and femtosecond transient absorption (fs-TA) were employed to dissect the ESPT of M3F and P3F in methanol, particularly with structural dynamics information. By virtue of resonantly enhanced FSRS signal and global analysis of fs-TA spectra, we revealed an inhomogeneous ESPT mechanism consisting of three parallel routes following the initial small-scale proton motion and contact ion-pair formation within ∼300 fs: The first route consists of ultrafast protolytic dissociation facilitated by the pre-existing, largely optimized H-bonding chain; the second route is limited by solvent reorientation that establishes a suitable H-bonding wire for proton separation; the third route is controlled by rotational diffusion that requires rotation of the anisotropically reactive photoacid in a bulky solvent with a complex H-bonding structure over larger distances. Furthermore, we provided new design principles of enhancing photoacidity in a synergistic manner: incorporating electron-withdrawing groups into proximal (often as “donor”) and distal (often as “acceptor”) ring moieties of the dissociative hydroxyl group to lower the ground-state pK a and increase the ΔpK a, respectively.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.9b03201</identifier><identifier>PMID: 30964985</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2019-05, Vol.123 (17), p.3804-3821</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-e0b00b1f68fe7217bb8e51a4900dcccf8450fec808496b5b9a4f8ca91a0d29e73</citedby><cites>FETCH-LOGICAL-a336t-e0b00b1f68fe7217bb8e51a4900dcccf8450fec808496b5b9a4f8ca91a0d29e73</cites><orcidid>0000-0002-8879-1825 ; 0000-0003-1747-6585 ; 0000-0001-9316-188X ; 0000-0003-0561-5226 ; 0000-0003-2558-2476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.9b03201$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.9b03201$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30964985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Cheng</creatorcontrib><creatorcontrib>Zhu, Liangdong</creatorcontrib><creatorcontrib>Baranov, Mikhail S</creatorcontrib><creatorcontrib>Tang, Longteng</creatorcontrib><creatorcontrib>Baleeva, Nadezhda S</creatorcontrib><creatorcontrib>Smirnov, Alexander Yu</creatorcontrib><creatorcontrib>Yampolsky, Ilia V</creatorcontrib><creatorcontrib>Solntsev, Kyril M</creatorcontrib><creatorcontrib>Fang, Chong</creatorcontrib><title>Photoinduced Proton Transfer of GFP-Inspired Fluorescent Superphotoacids: Principles and Design</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Proton transfer remains one of the most fundamental processes in chemistry and biology. Superphotoacids provide an excellent platform to delineate the excited-state proton transfer (ESPT) mechanism on ultrafast time scales and enable one to precisely control photoacidity and other pertinent functionalities such as fluorescence. We modified the GFP core (p-HBDI chromophore) into two series of highly fluorescent photoacids by fluorinating the phenolic ring and conformationally locking the backbone (i.e., biomimetics). The trifluorinated derivatives, M3F and P3F, represent two of the strongest superphotoacids with pK a* values of –5.0 and –5.5, respectively, and they can efficiently transfer a proton to organic solvents like methanol. Tunable femtosecond stimulated Raman spectroscopy (FSRS) and femtosecond transient absorption (fs-TA) were employed to dissect the ESPT of M3F and P3F in methanol, particularly with structural dynamics information. By virtue of resonantly enhanced FSRS signal and global analysis of fs-TA spectra, we revealed an inhomogeneous ESPT mechanism consisting of three parallel routes following the initial small-scale proton motion and contact ion-pair formation within ∼300 fs: The first route consists of ultrafast protolytic dissociation facilitated by the pre-existing, largely optimized H-bonding chain; the second route is limited by solvent reorientation that establishes a suitable H-bonding wire for proton separation; the third route is controlled by rotational diffusion that requires rotation of the anisotropically reactive photoacid in a bulky solvent with a complex H-bonding structure over larger distances. Furthermore, we provided new design principles of enhancing photoacidity in a synergistic manner: incorporating electron-withdrawing groups into proximal (often as “donor”) and distal (often as “acceptor”) ring moieties of the dissociative hydroxyl group to lower the ground-state pK a and increase the ΔpK a, respectively.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM9PwyAYhonROJ3ePZkePdj50Z_Um5luLlniEueZAP3QLh1UaA_-9zI3vXkgQHifNx8PIVcUJhQSeieUn2w6JSeVhDQBekTOaJ5AHFZ5fDgXFIoROfd-A5DkCStOySiFqsgqlp8RvvqwvW1MPSiso5ULFxOtnTBeo4usjuazVbwwvmtceJ-1g3XoFZo-eh06dN2OFqqp_X2AG6OarkUfCVNHj-ibd3NBTrRoPV4e9jF5mz2tp8_x8mW-mD4sY5GmRR8jSABJdcE0lgktpWSYU5FVALVSSrMsB42KAcuqQuayEplmSlRUQJ1UWKZjcrPv7Zz9HND3fNuEOdtWGLSD50kwQvOyyPIQhX1UOeu9Q80712yF--IU-E4rD1r5Tis_aA3I9aF9kFus_4BfjyFwuw_8oHZwJnz2_75v_w2E7Q</recordid><startdate>20190502</startdate><enddate>20190502</enddate><creator>Chen, Cheng</creator><creator>Zhu, Liangdong</creator><creator>Baranov, Mikhail S</creator><creator>Tang, Longteng</creator><creator>Baleeva, Nadezhda S</creator><creator>Smirnov, Alexander Yu</creator><creator>Yampolsky, Ilia V</creator><creator>Solntsev, Kyril M</creator><creator>Fang, Chong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8879-1825</orcidid><orcidid>https://orcid.org/0000-0003-1747-6585</orcidid><orcidid>https://orcid.org/0000-0001-9316-188X</orcidid><orcidid>https://orcid.org/0000-0003-0561-5226</orcidid><orcidid>https://orcid.org/0000-0003-2558-2476</orcidid></search><sort><creationdate>20190502</creationdate><title>Photoinduced Proton Transfer of GFP-Inspired Fluorescent Superphotoacids: Principles and Design</title><author>Chen, Cheng ; Zhu, Liangdong ; Baranov, Mikhail S ; Tang, Longteng ; Baleeva, Nadezhda S ; Smirnov, Alexander Yu ; Yampolsky, Ilia V ; Solntsev, Kyril M ; Fang, Chong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-e0b00b1f68fe7217bb8e51a4900dcccf8450fec808496b5b9a4f8ca91a0d29e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Cheng</creatorcontrib><creatorcontrib>Zhu, Liangdong</creatorcontrib><creatorcontrib>Baranov, Mikhail S</creatorcontrib><creatorcontrib>Tang, Longteng</creatorcontrib><creatorcontrib>Baleeva, Nadezhda S</creatorcontrib><creatorcontrib>Smirnov, Alexander Yu</creatorcontrib><creatorcontrib>Yampolsky, Ilia V</creatorcontrib><creatorcontrib>Solntsev, Kyril M</creatorcontrib><creatorcontrib>Fang, Chong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Cheng</au><au>Zhu, Liangdong</au><au>Baranov, Mikhail S</au><au>Tang, Longteng</au><au>Baleeva, Nadezhda S</au><au>Smirnov, Alexander Yu</au><au>Yampolsky, Ilia V</au><au>Solntsev, Kyril M</au><au>Fang, Chong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoinduced Proton Transfer of GFP-Inspired Fluorescent Superphotoacids: Principles and Design</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2019-05-02</date><risdate>2019</risdate><volume>123</volume><issue>17</issue><spage>3804</spage><epage>3821</epage><pages>3804-3821</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Proton transfer remains one of the most fundamental processes in chemistry and biology. Superphotoacids provide an excellent platform to delineate the excited-state proton transfer (ESPT) mechanism on ultrafast time scales and enable one to precisely control photoacidity and other pertinent functionalities such as fluorescence. We modified the GFP core (p-HBDI chromophore) into two series of highly fluorescent photoacids by fluorinating the phenolic ring and conformationally locking the backbone (i.e., biomimetics). The trifluorinated derivatives, M3F and P3F, represent two of the strongest superphotoacids with pK a* values of –5.0 and –5.5, respectively, and they can efficiently transfer a proton to organic solvents like methanol. Tunable femtosecond stimulated Raman spectroscopy (FSRS) and femtosecond transient absorption (fs-TA) were employed to dissect the ESPT of M3F and P3F in methanol, particularly with structural dynamics information. By virtue of resonantly enhanced FSRS signal and global analysis of fs-TA spectra, we revealed an inhomogeneous ESPT mechanism consisting of three parallel routes following the initial small-scale proton motion and contact ion-pair formation within ∼300 fs: The first route consists of ultrafast protolytic dissociation facilitated by the pre-existing, largely optimized H-bonding chain; the second route is limited by solvent reorientation that establishes a suitable H-bonding wire for proton separation; the third route is controlled by rotational diffusion that requires rotation of the anisotropically reactive photoacid in a bulky solvent with a complex H-bonding structure over larger distances. Furthermore, we provided new design principles of enhancing photoacidity in a synergistic manner: incorporating electron-withdrawing groups into proximal (often as “donor”) and distal (often as “acceptor”) ring moieties of the dissociative hydroxyl group to lower the ground-state pK a and increase the ΔpK a, respectively.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30964985</pmid><doi>10.1021/acs.jpcb.9b03201</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8879-1825</orcidid><orcidid>https://orcid.org/0000-0003-1747-6585</orcidid><orcidid>https://orcid.org/0000-0001-9316-188X</orcidid><orcidid>https://orcid.org/0000-0003-0561-5226</orcidid><orcidid>https://orcid.org/0000-0003-2558-2476</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2019-05, Vol.123 (17), p.3804-3821
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_2207157645
source ACS Publications
title Photoinduced Proton Transfer of GFP-Inspired Fluorescent Superphotoacids: Principles and Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoinduced%20Proton%20Transfer%20of%20GFP-Inspired%20Fluorescent%20Superphotoacids:%20Principles%20and%20Design&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Chen,%20Cheng&rft.date=2019-05-02&rft.volume=123&rft.issue=17&rft.spage=3804&rft.epage=3821&rft.pages=3804-3821&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.9b03201&rft_dat=%3Cproquest_cross%3E2207157645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207157645&rft_id=info:pmid/30964985&rfr_iscdi=true