Lattice -Mismatch-Induced Ultrastable 1T-Phase MoS2–Pd/Au for Plasmon-Enhanced Hydrogen Evolution
Metallic 1T-phase transition metal dichalcogenides (TMDs) are of considerable interest in enhancing catalytic applications due to their abundant active sites and good conductivity. However, the unstable nature of 1T-phase TMDs greatly impedes their practical applications. Herein, we developed a new...
Gespeichert in:
Veröffentlicht in: | Nano letters 2019-05, Vol.19 (5), p.2758-2764 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2764 |
---|---|
container_issue | 5 |
container_start_page | 2758 |
container_title | Nano letters |
container_volume | 19 |
creator | Shang, Bo Cui, Xiaoqiang Jiao, Lin Qi, Kun Wang, Yingwei Fan, Jinchang Yue, Yuanyuan Wang, Haiyu Bao, Qiaoliang Fan, Xiaofeng Wei, Shuting Song, Wei Cheng, Zhiliang Guo, Shaojun Zheng, Weitao |
description | Metallic 1T-phase transition metal dichalcogenides (TMDs) are of considerable interest in enhancing catalytic applications due to their abundant active sites and good conductivity. However, the unstable nature of 1T-phase TMDs greatly impedes their practical applications. Herein, we developed a new approach for the synthesis of highly stable 1T-phase Au/Pd-MoS2 nanosheets (NSs) through a metal assembly induced ultrastable phase transition for achieving a very high electrocatalytic activity in the hydrogen evolution reaction. The phase transition was evoked by a novel mechanism of lattice-mismatch-induced strain based on density functional theory (DFT) calculations. Raman spectroscopy and transmission electron microscopy (TEM) were used to confirm the phase transition on experimental grounds. A novel heterostructured 1T MoS2–Au/Pd catalyst was designed and synthesized using this mechanism, and the catalyst exhibited a 0 mV onset potential in the hydrogen evolution reaction under light illumination. Therefore, this method can potentially be used to fabricate 1T-phase TMDs with remarkably enhanced activities for different applications. |
doi_str_mv | 10.1021/acs.nanolett.8b04104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2206230325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2206230325</sourcerecordid><originalsourceid>FETCH-LOGICAL-a225t-98f8a8031644b39508143d625554109bb5dbbe8e928bd50c99ac13a46a2298ad3</originalsourceid><addsrcrecordid>eNo9kM1OAjEUhRujiYi-gYtZuin0Zzppl4SgkEAkEdaT2x8EUlqddkzc-Q6-oU_iENDVvbk55-TcD6F7SgaUMDoEkwYBQvQu54HUpKSkvEA9KjjBlVLs8n-X5TW6SWlPCFFckB4yc8h5Z1yBF7t0gGy2eBZsa5wt1j43kDJo7wq6wsstJFcs4gv7-fpe2uGoLTaxKZYe0iEGPAlbCEfb9NM28dWFYvIRfZt3Mdyiqw345O7Os4_Wj5PVeIrnz0-z8WiOgTGRsZIbCZJwWpWl5koQSUtuKyaE6B5SWgurtZNOMamtIEYpMJRDWXV2JcHyPno45b418b11KdeHXTLOewgutqlmjFSME85EJyUnaYeu3se2CV2xmpL6yLM-Hv941mee_Be_xGxV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206230325</pqid></control><display><type>article</type><title>Lattice -Mismatch-Induced Ultrastable 1T-Phase MoS2–Pd/Au for Plasmon-Enhanced Hydrogen Evolution</title><source>American Chemical Society Publications</source><creator>Shang, Bo ; Cui, Xiaoqiang ; Jiao, Lin ; Qi, Kun ; Wang, Yingwei ; Fan, Jinchang ; Yue, Yuanyuan ; Wang, Haiyu ; Bao, Qiaoliang ; Fan, Xiaofeng ; Wei, Shuting ; Song, Wei ; Cheng, Zhiliang ; Guo, Shaojun ; Zheng, Weitao</creator><creatorcontrib>Shang, Bo ; Cui, Xiaoqiang ; Jiao, Lin ; Qi, Kun ; Wang, Yingwei ; Fan, Jinchang ; Yue, Yuanyuan ; Wang, Haiyu ; Bao, Qiaoliang ; Fan, Xiaofeng ; Wei, Shuting ; Song, Wei ; Cheng, Zhiliang ; Guo, Shaojun ; Zheng, Weitao</creatorcontrib><description>Metallic 1T-phase transition metal dichalcogenides (TMDs) are of considerable interest in enhancing catalytic applications due to their abundant active sites and good conductivity. However, the unstable nature of 1T-phase TMDs greatly impedes their practical applications. Herein, we developed a new approach for the synthesis of highly stable 1T-phase Au/Pd-MoS2 nanosheets (NSs) through a metal assembly induced ultrastable phase transition for achieving a very high electrocatalytic activity in the hydrogen evolution reaction. The phase transition was evoked by a novel mechanism of lattice-mismatch-induced strain based on density functional theory (DFT) calculations. Raman spectroscopy and transmission electron microscopy (TEM) were used to confirm the phase transition on experimental grounds. A novel heterostructured 1T MoS2–Au/Pd catalyst was designed and synthesized using this mechanism, and the catalyst exhibited a 0 mV onset potential in the hydrogen evolution reaction under light illumination. Therefore, this method can potentially be used to fabricate 1T-phase TMDs with remarkably enhanced activities for different applications.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.8b04104</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2019-05, Vol.19 (5), p.2758-2764</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4427-6837 ; 0000-0003-3351-6874 ; 0000-0001-6288-4866 ; 0000-0001-9814-419X ; 0000-0002-5858-6257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.8b04104$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.8b04104$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Shang, Bo</creatorcontrib><creatorcontrib>Cui, Xiaoqiang</creatorcontrib><creatorcontrib>Jiao, Lin</creatorcontrib><creatorcontrib>Qi, Kun</creatorcontrib><creatorcontrib>Wang, Yingwei</creatorcontrib><creatorcontrib>Fan, Jinchang</creatorcontrib><creatorcontrib>Yue, Yuanyuan</creatorcontrib><creatorcontrib>Wang, Haiyu</creatorcontrib><creatorcontrib>Bao, Qiaoliang</creatorcontrib><creatorcontrib>Fan, Xiaofeng</creatorcontrib><creatorcontrib>Wei, Shuting</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Cheng, Zhiliang</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><creatorcontrib>Zheng, Weitao</creatorcontrib><title>Lattice -Mismatch-Induced Ultrastable 1T-Phase MoS2–Pd/Au for Plasmon-Enhanced Hydrogen Evolution</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Metallic 1T-phase transition metal dichalcogenides (TMDs) are of considerable interest in enhancing catalytic applications due to their abundant active sites and good conductivity. However, the unstable nature of 1T-phase TMDs greatly impedes their practical applications. Herein, we developed a new approach for the synthesis of highly stable 1T-phase Au/Pd-MoS2 nanosheets (NSs) through a metal assembly induced ultrastable phase transition for achieving a very high electrocatalytic activity in the hydrogen evolution reaction. The phase transition was evoked by a novel mechanism of lattice-mismatch-induced strain based on density functional theory (DFT) calculations. Raman spectroscopy and transmission electron microscopy (TEM) were used to confirm the phase transition on experimental grounds. A novel heterostructured 1T MoS2–Au/Pd catalyst was designed and synthesized using this mechanism, and the catalyst exhibited a 0 mV onset potential in the hydrogen evolution reaction under light illumination. Therefore, this method can potentially be used to fabricate 1T-phase TMDs with remarkably enhanced activities for different applications.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OAjEUhRujiYi-gYtZuin0Zzppl4SgkEAkEdaT2x8EUlqddkzc-Q6-oU_iENDVvbk55-TcD6F7SgaUMDoEkwYBQvQu54HUpKSkvEA9KjjBlVLs8n-X5TW6SWlPCFFckB4yc8h5Z1yBF7t0gGy2eBZsa5wt1j43kDJo7wq6wsstJFcs4gv7-fpe2uGoLTaxKZYe0iEGPAlbCEfb9NM28dWFYvIRfZt3Mdyiqw345O7Os4_Wj5PVeIrnz0-z8WiOgTGRsZIbCZJwWpWl5koQSUtuKyaE6B5SWgurtZNOMamtIEYpMJRDWXV2JcHyPno45b418b11KdeHXTLOewgutqlmjFSME85EJyUnaYeu3se2CV2xmpL6yLM-Hv941mee_Be_xGxV</recordid><startdate>20190508</startdate><enddate>20190508</enddate><creator>Shang, Bo</creator><creator>Cui, Xiaoqiang</creator><creator>Jiao, Lin</creator><creator>Qi, Kun</creator><creator>Wang, Yingwei</creator><creator>Fan, Jinchang</creator><creator>Yue, Yuanyuan</creator><creator>Wang, Haiyu</creator><creator>Bao, Qiaoliang</creator><creator>Fan, Xiaofeng</creator><creator>Wei, Shuting</creator><creator>Song, Wei</creator><creator>Cheng, Zhiliang</creator><creator>Guo, Shaojun</creator><creator>Zheng, Weitao</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4427-6837</orcidid><orcidid>https://orcid.org/0000-0003-3351-6874</orcidid><orcidid>https://orcid.org/0000-0001-6288-4866</orcidid><orcidid>https://orcid.org/0000-0001-9814-419X</orcidid><orcidid>https://orcid.org/0000-0002-5858-6257</orcidid></search><sort><creationdate>20190508</creationdate><title>Lattice -Mismatch-Induced Ultrastable 1T-Phase MoS2–Pd/Au for Plasmon-Enhanced Hydrogen Evolution</title><author>Shang, Bo ; Cui, Xiaoqiang ; Jiao, Lin ; Qi, Kun ; Wang, Yingwei ; Fan, Jinchang ; Yue, Yuanyuan ; Wang, Haiyu ; Bao, Qiaoliang ; Fan, Xiaofeng ; Wei, Shuting ; Song, Wei ; Cheng, Zhiliang ; Guo, Shaojun ; Zheng, Weitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a225t-98f8a8031644b39508143d625554109bb5dbbe8e928bd50c99ac13a46a2298ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Bo</creatorcontrib><creatorcontrib>Cui, Xiaoqiang</creatorcontrib><creatorcontrib>Jiao, Lin</creatorcontrib><creatorcontrib>Qi, Kun</creatorcontrib><creatorcontrib>Wang, Yingwei</creatorcontrib><creatorcontrib>Fan, Jinchang</creatorcontrib><creatorcontrib>Yue, Yuanyuan</creatorcontrib><creatorcontrib>Wang, Haiyu</creatorcontrib><creatorcontrib>Bao, Qiaoliang</creatorcontrib><creatorcontrib>Fan, Xiaofeng</creatorcontrib><creatorcontrib>Wei, Shuting</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Cheng, Zhiliang</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><creatorcontrib>Zheng, Weitao</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Bo</au><au>Cui, Xiaoqiang</au><au>Jiao, Lin</au><au>Qi, Kun</au><au>Wang, Yingwei</au><au>Fan, Jinchang</au><au>Yue, Yuanyuan</au><au>Wang, Haiyu</au><au>Bao, Qiaoliang</au><au>Fan, Xiaofeng</au><au>Wei, Shuting</au><au>Song, Wei</au><au>Cheng, Zhiliang</au><au>Guo, Shaojun</au><au>Zheng, Weitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice -Mismatch-Induced Ultrastable 1T-Phase MoS2–Pd/Au for Plasmon-Enhanced Hydrogen Evolution</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-05-08</date><risdate>2019</risdate><volume>19</volume><issue>5</issue><spage>2758</spage><epage>2764</epage><pages>2758-2764</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Metallic 1T-phase transition metal dichalcogenides (TMDs) are of considerable interest in enhancing catalytic applications due to their abundant active sites and good conductivity. However, the unstable nature of 1T-phase TMDs greatly impedes their practical applications. Herein, we developed a new approach for the synthesis of highly stable 1T-phase Au/Pd-MoS2 nanosheets (NSs) through a metal assembly induced ultrastable phase transition for achieving a very high electrocatalytic activity in the hydrogen evolution reaction. The phase transition was evoked by a novel mechanism of lattice-mismatch-induced strain based on density functional theory (DFT) calculations. Raman spectroscopy and transmission electron microscopy (TEM) were used to confirm the phase transition on experimental grounds. A novel heterostructured 1T MoS2–Au/Pd catalyst was designed and synthesized using this mechanism, and the catalyst exhibited a 0 mV onset potential in the hydrogen evolution reaction under light illumination. Therefore, this method can potentially be used to fabricate 1T-phase TMDs with remarkably enhanced activities for different applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.8b04104</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4427-6837</orcidid><orcidid>https://orcid.org/0000-0003-3351-6874</orcidid><orcidid>https://orcid.org/0000-0001-6288-4866</orcidid><orcidid>https://orcid.org/0000-0001-9814-419X</orcidid><orcidid>https://orcid.org/0000-0002-5858-6257</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2019-05, Vol.19 (5), p.2758-2764 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_2206230325 |
source | American Chemical Society Publications |
title | Lattice -Mismatch-Induced Ultrastable 1T-Phase MoS2–Pd/Au for Plasmon-Enhanced Hydrogen Evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A33%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20-Mismatch-Induced%20Ultrastable%201T-Phase%20MoS2%E2%80%93Pd/Au%20for%20Plasmon-Enhanced%20Hydrogen%20Evolution&rft.jtitle=Nano%20letters&rft.au=Shang,%20Bo&rft.date=2019-05-08&rft.volume=19&rft.issue=5&rft.spage=2758&rft.epage=2764&rft.pages=2758-2764&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.8b04104&rft_dat=%3Cproquest_acs_j%3E2206230325%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206230325&rft_id=info:pmid/&rfr_iscdi=true |