Lattice -Mismatch-Induced Ultrastable 1T-Phase MoS2–Pd/Au for Plasmon-Enhanced Hydrogen Evolution

Metallic 1T-phase transition metal dichalcogenides (TMDs) are of considerable interest in enhancing catalytic applications due to their abundant active sites and good conductivity. However, the unstable nature of 1T-phase TMDs greatly impedes their practical applications. Herein, we developed a new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2019-05, Vol.19 (5), p.2758-2764
Hauptverfasser: Shang, Bo, Cui, Xiaoqiang, Jiao, Lin, Qi, Kun, Wang, Yingwei, Fan, Jinchang, Yue, Yuanyuan, Wang, Haiyu, Bao, Qiaoliang, Fan, Xiaofeng, Wei, Shuting, Song, Wei, Cheng, Zhiliang, Guo, Shaojun, Zheng, Weitao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2764
container_issue 5
container_start_page 2758
container_title Nano letters
container_volume 19
creator Shang, Bo
Cui, Xiaoqiang
Jiao, Lin
Qi, Kun
Wang, Yingwei
Fan, Jinchang
Yue, Yuanyuan
Wang, Haiyu
Bao, Qiaoliang
Fan, Xiaofeng
Wei, Shuting
Song, Wei
Cheng, Zhiliang
Guo, Shaojun
Zheng, Weitao
description Metallic 1T-phase transition metal dichalcogenides (TMDs) are of considerable interest in enhancing catalytic applications due to their abundant active sites and good conductivity. However, the unstable nature of 1T-phase TMDs greatly impedes their practical applications. Herein, we developed a new approach for the synthesis of highly stable 1T-phase Au/Pd-MoS2 nanosheets (NSs) through a metal assembly induced ultrastable phase transition for achieving a very high electrocatalytic activity in the hydrogen evolution reaction. The phase transition was evoked by a novel mechanism of lattice-mismatch-induced strain based on density functional theory (DFT) calculations. Raman spectroscopy and transmission electron microscopy (TEM) were used to confirm the phase transition on experimental grounds. A novel heterostructured 1T MoS2–Au/Pd catalyst was designed and synthesized using this mechanism, and the catalyst exhibited a 0 mV onset potential in the hydrogen evolution reaction under light illumination. Therefore, this method can potentially be used to fabricate 1T-phase TMDs with remarkably enhanced activities for different applications.
doi_str_mv 10.1021/acs.nanolett.8b04104
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2206230325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2206230325</sourcerecordid><originalsourceid>FETCH-LOGICAL-a225t-98f8a8031644b39508143d625554109bb5dbbe8e928bd50c99ac13a46a2298ad3</originalsourceid><addsrcrecordid>eNo9kM1OAjEUhRujiYi-gYtZuin0Zzppl4SgkEAkEdaT2x8EUlqddkzc-Q6-oU_iENDVvbk55-TcD6F7SgaUMDoEkwYBQvQu54HUpKSkvEA9KjjBlVLs8n-X5TW6SWlPCFFckB4yc8h5Z1yBF7t0gGy2eBZsa5wt1j43kDJo7wq6wsstJFcs4gv7-fpe2uGoLTaxKZYe0iEGPAlbCEfb9NM28dWFYvIRfZt3Mdyiqw345O7Os4_Wj5PVeIrnz0-z8WiOgTGRsZIbCZJwWpWl5koQSUtuKyaE6B5SWgurtZNOMamtIEYpMJRDWXV2JcHyPno45b418b11KdeHXTLOewgutqlmjFSME85EJyUnaYeu3se2CV2xmpL6yLM-Hv941mee_Be_xGxV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206230325</pqid></control><display><type>article</type><title>Lattice -Mismatch-Induced Ultrastable 1T-Phase MoS2–Pd/Au for Plasmon-Enhanced Hydrogen Evolution</title><source>American Chemical Society Publications</source><creator>Shang, Bo ; Cui, Xiaoqiang ; Jiao, Lin ; Qi, Kun ; Wang, Yingwei ; Fan, Jinchang ; Yue, Yuanyuan ; Wang, Haiyu ; Bao, Qiaoliang ; Fan, Xiaofeng ; Wei, Shuting ; Song, Wei ; Cheng, Zhiliang ; Guo, Shaojun ; Zheng, Weitao</creator><creatorcontrib>Shang, Bo ; Cui, Xiaoqiang ; Jiao, Lin ; Qi, Kun ; Wang, Yingwei ; Fan, Jinchang ; Yue, Yuanyuan ; Wang, Haiyu ; Bao, Qiaoliang ; Fan, Xiaofeng ; Wei, Shuting ; Song, Wei ; Cheng, Zhiliang ; Guo, Shaojun ; Zheng, Weitao</creatorcontrib><description>Metallic 1T-phase transition metal dichalcogenides (TMDs) are of considerable interest in enhancing catalytic applications due to their abundant active sites and good conductivity. However, the unstable nature of 1T-phase TMDs greatly impedes their practical applications. Herein, we developed a new approach for the synthesis of highly stable 1T-phase Au/Pd-MoS2 nanosheets (NSs) through a metal assembly induced ultrastable phase transition for achieving a very high electrocatalytic activity in the hydrogen evolution reaction. The phase transition was evoked by a novel mechanism of lattice-mismatch-induced strain based on density functional theory (DFT) calculations. Raman spectroscopy and transmission electron microscopy (TEM) were used to confirm the phase transition on experimental grounds. A novel heterostructured 1T MoS2–Au/Pd catalyst was designed and synthesized using this mechanism, and the catalyst exhibited a 0 mV onset potential in the hydrogen evolution reaction under light illumination. Therefore, this method can potentially be used to fabricate 1T-phase TMDs with remarkably enhanced activities for different applications.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.8b04104</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2019-05, Vol.19 (5), p.2758-2764</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4427-6837 ; 0000-0003-3351-6874 ; 0000-0001-6288-4866 ; 0000-0001-9814-419X ; 0000-0002-5858-6257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.8b04104$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.8b04104$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Shang, Bo</creatorcontrib><creatorcontrib>Cui, Xiaoqiang</creatorcontrib><creatorcontrib>Jiao, Lin</creatorcontrib><creatorcontrib>Qi, Kun</creatorcontrib><creatorcontrib>Wang, Yingwei</creatorcontrib><creatorcontrib>Fan, Jinchang</creatorcontrib><creatorcontrib>Yue, Yuanyuan</creatorcontrib><creatorcontrib>Wang, Haiyu</creatorcontrib><creatorcontrib>Bao, Qiaoliang</creatorcontrib><creatorcontrib>Fan, Xiaofeng</creatorcontrib><creatorcontrib>Wei, Shuting</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Cheng, Zhiliang</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><creatorcontrib>Zheng, Weitao</creatorcontrib><title>Lattice -Mismatch-Induced Ultrastable 1T-Phase MoS2–Pd/Au for Plasmon-Enhanced Hydrogen Evolution</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Metallic 1T-phase transition metal dichalcogenides (TMDs) are of considerable interest in enhancing catalytic applications due to their abundant active sites and good conductivity. However, the unstable nature of 1T-phase TMDs greatly impedes their practical applications. Herein, we developed a new approach for the synthesis of highly stable 1T-phase Au/Pd-MoS2 nanosheets (NSs) through a metal assembly induced ultrastable phase transition for achieving a very high electrocatalytic activity in the hydrogen evolution reaction. The phase transition was evoked by a novel mechanism of lattice-mismatch-induced strain based on density functional theory (DFT) calculations. Raman spectroscopy and transmission electron microscopy (TEM) were used to confirm the phase transition on experimental grounds. A novel heterostructured 1T MoS2–Au/Pd catalyst was designed and synthesized using this mechanism, and the catalyst exhibited a 0 mV onset potential in the hydrogen evolution reaction under light illumination. Therefore, this method can potentially be used to fabricate 1T-phase TMDs with remarkably enhanced activities for different applications.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OAjEUhRujiYi-gYtZuin0Zzppl4SgkEAkEdaT2x8EUlqddkzc-Q6-oU_iENDVvbk55-TcD6F7SgaUMDoEkwYBQvQu54HUpKSkvEA9KjjBlVLs8n-X5TW6SWlPCFFckB4yc8h5Z1yBF7t0gGy2eBZsa5wt1j43kDJo7wq6wsstJFcs4gv7-fpe2uGoLTaxKZYe0iEGPAlbCEfb9NM28dWFYvIRfZt3Mdyiqw345O7Os4_Wj5PVeIrnz0-z8WiOgTGRsZIbCZJwWpWl5koQSUtuKyaE6B5SWgurtZNOMamtIEYpMJRDWXV2JcHyPno45b418b11KdeHXTLOewgutqlmjFSME85EJyUnaYeu3se2CV2xmpL6yLM-Hv941mee_Be_xGxV</recordid><startdate>20190508</startdate><enddate>20190508</enddate><creator>Shang, Bo</creator><creator>Cui, Xiaoqiang</creator><creator>Jiao, Lin</creator><creator>Qi, Kun</creator><creator>Wang, Yingwei</creator><creator>Fan, Jinchang</creator><creator>Yue, Yuanyuan</creator><creator>Wang, Haiyu</creator><creator>Bao, Qiaoliang</creator><creator>Fan, Xiaofeng</creator><creator>Wei, Shuting</creator><creator>Song, Wei</creator><creator>Cheng, Zhiliang</creator><creator>Guo, Shaojun</creator><creator>Zheng, Weitao</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4427-6837</orcidid><orcidid>https://orcid.org/0000-0003-3351-6874</orcidid><orcidid>https://orcid.org/0000-0001-6288-4866</orcidid><orcidid>https://orcid.org/0000-0001-9814-419X</orcidid><orcidid>https://orcid.org/0000-0002-5858-6257</orcidid></search><sort><creationdate>20190508</creationdate><title>Lattice -Mismatch-Induced Ultrastable 1T-Phase MoS2–Pd/Au for Plasmon-Enhanced Hydrogen Evolution</title><author>Shang, Bo ; Cui, Xiaoqiang ; Jiao, Lin ; Qi, Kun ; Wang, Yingwei ; Fan, Jinchang ; Yue, Yuanyuan ; Wang, Haiyu ; Bao, Qiaoliang ; Fan, Xiaofeng ; Wei, Shuting ; Song, Wei ; Cheng, Zhiliang ; Guo, Shaojun ; Zheng, Weitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a225t-98f8a8031644b39508143d625554109bb5dbbe8e928bd50c99ac13a46a2298ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Bo</creatorcontrib><creatorcontrib>Cui, Xiaoqiang</creatorcontrib><creatorcontrib>Jiao, Lin</creatorcontrib><creatorcontrib>Qi, Kun</creatorcontrib><creatorcontrib>Wang, Yingwei</creatorcontrib><creatorcontrib>Fan, Jinchang</creatorcontrib><creatorcontrib>Yue, Yuanyuan</creatorcontrib><creatorcontrib>Wang, Haiyu</creatorcontrib><creatorcontrib>Bao, Qiaoliang</creatorcontrib><creatorcontrib>Fan, Xiaofeng</creatorcontrib><creatorcontrib>Wei, Shuting</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Cheng, Zhiliang</creatorcontrib><creatorcontrib>Guo, Shaojun</creatorcontrib><creatorcontrib>Zheng, Weitao</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Bo</au><au>Cui, Xiaoqiang</au><au>Jiao, Lin</au><au>Qi, Kun</au><au>Wang, Yingwei</au><au>Fan, Jinchang</au><au>Yue, Yuanyuan</au><au>Wang, Haiyu</au><au>Bao, Qiaoliang</au><au>Fan, Xiaofeng</au><au>Wei, Shuting</au><au>Song, Wei</au><au>Cheng, Zhiliang</au><au>Guo, Shaojun</au><au>Zheng, Weitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice -Mismatch-Induced Ultrastable 1T-Phase MoS2–Pd/Au for Plasmon-Enhanced Hydrogen Evolution</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-05-08</date><risdate>2019</risdate><volume>19</volume><issue>5</issue><spage>2758</spage><epage>2764</epage><pages>2758-2764</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Metallic 1T-phase transition metal dichalcogenides (TMDs) are of considerable interest in enhancing catalytic applications due to their abundant active sites and good conductivity. However, the unstable nature of 1T-phase TMDs greatly impedes their practical applications. Herein, we developed a new approach for the synthesis of highly stable 1T-phase Au/Pd-MoS2 nanosheets (NSs) through a metal assembly induced ultrastable phase transition for achieving a very high electrocatalytic activity in the hydrogen evolution reaction. The phase transition was evoked by a novel mechanism of lattice-mismatch-induced strain based on density functional theory (DFT) calculations. Raman spectroscopy and transmission electron microscopy (TEM) were used to confirm the phase transition on experimental grounds. A novel heterostructured 1T MoS2–Au/Pd catalyst was designed and synthesized using this mechanism, and the catalyst exhibited a 0 mV onset potential in the hydrogen evolution reaction under light illumination. Therefore, this method can potentially be used to fabricate 1T-phase TMDs with remarkably enhanced activities for different applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.8b04104</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4427-6837</orcidid><orcidid>https://orcid.org/0000-0003-3351-6874</orcidid><orcidid>https://orcid.org/0000-0001-6288-4866</orcidid><orcidid>https://orcid.org/0000-0001-9814-419X</orcidid><orcidid>https://orcid.org/0000-0002-5858-6257</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2019-05, Vol.19 (5), p.2758-2764
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2206230325
source American Chemical Society Publications
title Lattice -Mismatch-Induced Ultrastable 1T-Phase MoS2–Pd/Au for Plasmon-Enhanced Hydrogen Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A33%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20-Mismatch-Induced%20Ultrastable%201T-Phase%20MoS2%E2%80%93Pd/Au%20for%20Plasmon-Enhanced%20Hydrogen%20Evolution&rft.jtitle=Nano%20letters&rft.au=Shang,%20Bo&rft.date=2019-05-08&rft.volume=19&rft.issue=5&rft.spage=2758&rft.epage=2764&rft.pages=2758-2764&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.8b04104&rft_dat=%3Cproquest_acs_j%3E2206230325%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206230325&rft_id=info:pmid/&rfr_iscdi=true