A glassy carbon electrode modified with molecularly imprinted poly(aniline boronic acid) coated onto carbon nanotubes for potentiometric sensing of sialic acid

A potentiometric sensor for sialic acid (SA) was developed based on molecular imprinting technique. The sensor was fabricated by modifying carbon nanotubes (CNT) and an SA-imprinted poly(aniline boronic acid) (PABA) film on a glassy carbon electrode (GCE). The detection strategy capitalizes on the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mikrochimica acta (1966) 2019-05, Vol.186 (5), p.270-270, Article 270
Hauptverfasser: Huang, Fuhui, Zhu, Bengao, Zhang, Haochen, Gao, Yue, Ding, Chunmei, Tan, Hong, Li, Jianshu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A potentiometric sensor for sialic acid (SA) was developed based on molecular imprinting technique. The sensor was fabricated by modifying carbon nanotubes (CNT) and an SA-imprinted poly(aniline boronic acid) (PABA) film on a glassy carbon electrode (GCE). The detection strategy capitalizes on the change of electrochemical potential resulting from boronic acid-SA interaction. The imprinted PABA combines the functions of SA-binding boronic acid groups and the imprinting effect, thus endowing it with both chemical and sterical recognition capability. The imprint factor (IF, compared to a non-molecularly imprinted polymer) is 1.74. The sensor can well differentiate SA from its analogs at physiological pH values and has a linear potentiometric response (R 2  = 0.998) in 80 μM to 8.2 mM SA concentrations range with a detection limit of 60 μM (at S/ N  = 3). The sensor was applied to the determination of SA in serum samples and gave recoveries between 93% and 105%. Graphical abstract Schematic presentation of the fabrication of a sialic acid (SA) imprinted poly(aniline boronic acid) (PABA)/CNT modified electrode. The electrode can well differentiate SA from its analogs at physiological pH and determine SA in human serum samples with satisfactory recoveries of 93%–105%.
ISSN:0026-3672
1436-5073
DOI:10.1007/s00604-019-3387-8