Galectin‐3 aggravates ox‐LDL‐induced endothelial dysfunction through LOX‐1 mediated signaling pathway

Galectin‐3, a biomarker linking oxidative stress and inflammation, participates in different mechanisms related to atherothrombosis, such as inflammation, proliferation, or macrophage chemotaxis. Accumulating evidence indicates that galectin‐3 may also promote atherogenesis through inducing endothel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental toxicology 2019-07, Vol.34 (7), p.825-835
Hauptverfasser: Ou, Hsiu‐Chung, Chou, Wan‐Ching, Hung, Ching‐Hsia, Chu, Pei‐Ming, Hsieh, Pei‐Ling, Chan, Shih‐Hung, Tsai, Kun‐Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 835
container_issue 7
container_start_page 825
container_title Environmental toxicology
container_volume 34
creator Ou, Hsiu‐Chung
Chou, Wan‐Ching
Hung, Ching‐Hsia
Chu, Pei‐Ming
Hsieh, Pei‐Ling
Chan, Shih‐Hung
Tsai, Kun‐Ling
description Galectin‐3, a biomarker linking oxidative stress and inflammation, participates in different mechanisms related to atherothrombosis, such as inflammation, proliferation, or macrophage chemotaxis. Accumulating evidence indicates that galectin‐3 may also promote atherogenesis through inducing endothelial dysfunction. Lectin‐like oxidized low‐density lipoprotein (oxLDL) receptor‐1 (LOX‐1), a receptor for oxLDL uptake, contributes to oxLDL‐induced endothelial dysfunction. Whether galectin‐3 induces endothelial dysfunction through modulation of LOX‐1‐mediated signaling remains unclear. In the present study, we explored the mechanisms underlying galectin‐3 enhanced cytotoxicity of oxLDL in human umbilical vein endothelial cells (HUVECs) and the role of LOX‐1. Incubation of HUVECs with galectin‐3 increased the expression of LOX‐1 in RNA and protein levels. In addition, the expression of LOX‐1 induced by oxLDL was promoted by galectin‐3. However, pretreatment of LOX‐1 antibody reduced LOX‐1 mRNA expression level in cells with oxLDL plus galectin‐3 incubation. Compared to cells treated with oxLDL alone, reactive oxygen species (ROS) generation via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and subsequent activation of p38 mitogen‐activated protein kinases followed by nuclear factor kappa B (NF‐κB) activation and related inflammatory responses including adhesion molecule expression, adhesiveness of monocytic cells, and IL‐8 release were also aggravated in cells treated with galectin‐3 combined with oxLDL. Compared to cells treated with galectin‐3 plus oxLDL group. We found that LOX‐1 antibody mitigated NADPH oxidase activity, p‐38 up‐regulation, NF‐κB activation, and proinflammatory responses in cells treated with galectin‐3 combined with oxLDL. We conclude that galectin‐3 enhances endothelial LOX‐1 expression and propose a new mechanism by which galectin‐3 may promote endothelial dysfunction by inducing inflammation via LOX‐1/ROS/p38/NF‐κB‐mediated signaling pathway.
doi_str_mv 10.1002/tox.22750
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2206224893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2206224893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3900-95ed3f22bd85514892aee998c2b2bf45ea77312f500203b4fe304ec1af7bd783</originalsourceid><addsrcrecordid>eNp1kbtOwzAUhi0E4lIYeAFkiQWGUF-SOBlRgYIUqUuHbpETnyRGaVziBMjGI_CMPAnuBQYkFp-jo8-f7PMjdE7JDSWEjTvzfsOYCMgeOqYBY55gItrf9MTzSUSP0Im1z4SQOAzCQ3TEXcMFDY_RcipryDvdfH18cizLspWvsgOLzbubJHeJO3Wj-hwUhkaZroJayxqrwRZ94y6aBndVa_qywsls4WiKl6C0cyhsddnIWjclXsmuepPDKTooZG3hbFdHaP5wP588esls-jS5Tbycx4R4cQCKF4xlKgoC6kcxkwBxHOUsY1nhByCF4JQVgfs84ZlfACc-5FQWIlMi4iN0tdWuWvPSg-3SpbY51LVswPQ2ZYyEjDkvd-jlH_TZ9K179ZriPudEhGvqekvlrbG2hSJdtXop2yGlJF1HkLoI0k0Ejr3YGfvMbeKX_Nm5A8Zb4E3XMPxvSuezxVb5DUwDlC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2234330763</pqid></control><display><type>article</type><title>Galectin‐3 aggravates ox‐LDL‐induced endothelial dysfunction through LOX‐1 mediated signaling pathway</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Ou, Hsiu‐Chung ; Chou, Wan‐Ching ; Hung, Ching‐Hsia ; Chu, Pei‐Ming ; Hsieh, Pei‐Ling ; Chan, Shih‐Hung ; Tsai, Kun‐Ling</creator><creatorcontrib>Ou, Hsiu‐Chung ; Chou, Wan‐Ching ; Hung, Ching‐Hsia ; Chu, Pei‐Ming ; Hsieh, Pei‐Ling ; Chan, Shih‐Hung ; Tsai, Kun‐Ling</creatorcontrib><description>Galectin‐3, a biomarker linking oxidative stress and inflammation, participates in different mechanisms related to atherothrombosis, such as inflammation, proliferation, or macrophage chemotaxis. Accumulating evidence indicates that galectin‐3 may also promote atherogenesis through inducing endothelial dysfunction. Lectin‐like oxidized low‐density lipoprotein (oxLDL) receptor‐1 (LOX‐1), a receptor for oxLDL uptake, contributes to oxLDL‐induced endothelial dysfunction. Whether galectin‐3 induces endothelial dysfunction through modulation of LOX‐1‐mediated signaling remains unclear. In the present study, we explored the mechanisms underlying galectin‐3 enhanced cytotoxicity of oxLDL in human umbilical vein endothelial cells (HUVECs) and the role of LOX‐1. Incubation of HUVECs with galectin‐3 increased the expression of LOX‐1 in RNA and protein levels. In addition, the expression of LOX‐1 induced by oxLDL was promoted by galectin‐3. However, pretreatment of LOX‐1 antibody reduced LOX‐1 mRNA expression level in cells with oxLDL plus galectin‐3 incubation. Compared to cells treated with oxLDL alone, reactive oxygen species (ROS) generation via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and subsequent activation of p38 mitogen‐activated protein kinases followed by nuclear factor kappa B (NF‐κB) activation and related inflammatory responses including adhesion molecule expression, adhesiveness of monocytic cells, and IL‐8 release were also aggravated in cells treated with galectin‐3 combined with oxLDL. Compared to cells treated with galectin‐3 plus oxLDL group. We found that LOX‐1 antibody mitigated NADPH oxidase activity, p‐38 up‐regulation, NF‐κB activation, and proinflammatory responses in cells treated with galectin‐3 combined with oxLDL. We conclude that galectin‐3 enhances endothelial LOX‐1 expression and propose a new mechanism by which galectin‐3 may promote endothelial dysfunction by inducing inflammation via LOX‐1/ROS/p38/NF‐κB‐mediated signaling pathway.</description><identifier>ISSN: 1520-4081</identifier><identifier>EISSN: 1522-7278</identifier><identifier>DOI: 10.1002/tox.22750</identifier><identifier>PMID: 30963716</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Activation ; Antibodies ; Atherogenesis ; Atherosclerosis - chemically induced ; Atherosclerosis - metabolism ; Atherosclerosis - pathology ; Biomarkers ; Cells, Cultured ; Chemotaxis ; Cytotoxicity ; Drug Synergism ; Endothelial cells ; Endothelium, Vascular - drug effects ; Galectin 3 - pharmacology ; galectin‐3 ; Gene expression ; Human Umbilical Vein Endothelial Cells - drug effects ; Human Umbilical Vein Endothelial Cells - physiology ; Humans ; Incubation period ; Inflammation ; Inflammation - chemically induced ; Inflammation - metabolism ; Inflammation - pathology ; Kinases ; Lipoproteins ; Lipoproteins, LDL - toxicity ; Liquid oxygen ; Low density lipoprotein ; LOX‐1 ; Macrophages ; Monocytes ; NAD(P)H oxidase ; NADPH oxidase ; NADPH-diaphorase ; NF-kappa B - metabolism ; Nicotinamide ; Nicotinamide adenine dinucleotide ; Nucleic acids ; Oxidase ; Oxidative stress ; Oxidative Stress - drug effects ; Oxidative Stress - physiology ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phosphates ; Pretreatment ; Proliferation ; Proteins ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Receptor density ; Receptors ; RNA ; Scavenger Receptors, Class E - physiology ; Signal transduction ; Signal Transduction - drug effects ; Signaling ; THP-1 Cells ; Toxicity ; Umbilical vein ; Uptake</subject><ispartof>Environmental toxicology, 2019-07, Vol.34 (7), p.825-835</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3900-95ed3f22bd85514892aee998c2b2bf45ea77312f500203b4fe304ec1af7bd783</citedby><cites>FETCH-LOGICAL-c3900-95ed3f22bd85514892aee998c2b2bf45ea77312f500203b4fe304ec1af7bd783</cites><orcidid>0000-0002-3814-1453</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ftox.22750$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ftox.22750$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30963716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ou, Hsiu‐Chung</creatorcontrib><creatorcontrib>Chou, Wan‐Ching</creatorcontrib><creatorcontrib>Hung, Ching‐Hsia</creatorcontrib><creatorcontrib>Chu, Pei‐Ming</creatorcontrib><creatorcontrib>Hsieh, Pei‐Ling</creatorcontrib><creatorcontrib>Chan, Shih‐Hung</creatorcontrib><creatorcontrib>Tsai, Kun‐Ling</creatorcontrib><title>Galectin‐3 aggravates ox‐LDL‐induced endothelial dysfunction through LOX‐1 mediated signaling pathway</title><title>Environmental toxicology</title><addtitle>Environ Toxicol</addtitle><description>Galectin‐3, a biomarker linking oxidative stress and inflammation, participates in different mechanisms related to atherothrombosis, such as inflammation, proliferation, or macrophage chemotaxis. Accumulating evidence indicates that galectin‐3 may also promote atherogenesis through inducing endothelial dysfunction. Lectin‐like oxidized low‐density lipoprotein (oxLDL) receptor‐1 (LOX‐1), a receptor for oxLDL uptake, contributes to oxLDL‐induced endothelial dysfunction. Whether galectin‐3 induces endothelial dysfunction through modulation of LOX‐1‐mediated signaling remains unclear. In the present study, we explored the mechanisms underlying galectin‐3 enhanced cytotoxicity of oxLDL in human umbilical vein endothelial cells (HUVECs) and the role of LOX‐1. Incubation of HUVECs with galectin‐3 increased the expression of LOX‐1 in RNA and protein levels. In addition, the expression of LOX‐1 induced by oxLDL was promoted by galectin‐3. However, pretreatment of LOX‐1 antibody reduced LOX‐1 mRNA expression level in cells with oxLDL plus galectin‐3 incubation. Compared to cells treated with oxLDL alone, reactive oxygen species (ROS) generation via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and subsequent activation of p38 mitogen‐activated protein kinases followed by nuclear factor kappa B (NF‐κB) activation and related inflammatory responses including adhesion molecule expression, adhesiveness of monocytic cells, and IL‐8 release were also aggravated in cells treated with galectin‐3 combined with oxLDL. Compared to cells treated with galectin‐3 plus oxLDL group. We found that LOX‐1 antibody mitigated NADPH oxidase activity, p‐38 up‐regulation, NF‐κB activation, and proinflammatory responses in cells treated with galectin‐3 combined with oxLDL. We conclude that galectin‐3 enhances endothelial LOX‐1 expression and propose a new mechanism by which galectin‐3 may promote endothelial dysfunction by inducing inflammation via LOX‐1/ROS/p38/NF‐κB‐mediated signaling pathway.</description><subject>Activation</subject><subject>Antibodies</subject><subject>Atherogenesis</subject><subject>Atherosclerosis - chemically induced</subject><subject>Atherosclerosis - metabolism</subject><subject>Atherosclerosis - pathology</subject><subject>Biomarkers</subject><subject>Cells, Cultured</subject><subject>Chemotaxis</subject><subject>Cytotoxicity</subject><subject>Drug Synergism</subject><subject>Endothelial cells</subject><subject>Endothelium, Vascular - drug effects</subject><subject>Galectin 3 - pharmacology</subject><subject>galectin‐3</subject><subject>Gene expression</subject><subject>Human Umbilical Vein Endothelial Cells - drug effects</subject><subject>Human Umbilical Vein Endothelial Cells - physiology</subject><subject>Humans</subject><subject>Incubation period</subject><subject>Inflammation</subject><subject>Inflammation - chemically induced</subject><subject>Inflammation - metabolism</subject><subject>Inflammation - pathology</subject><subject>Kinases</subject><subject>Lipoproteins</subject><subject>Lipoproteins, LDL - toxicity</subject><subject>Liquid oxygen</subject><subject>Low density lipoprotein</subject><subject>LOX‐1</subject><subject>Macrophages</subject><subject>Monocytes</subject><subject>NAD(P)H oxidase</subject><subject>NADPH oxidase</subject><subject>NADPH-diaphorase</subject><subject>NF-kappa B - metabolism</subject><subject>Nicotinamide</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Nucleic acids</subject><subject>Oxidase</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidative Stress - physiology</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phosphates</subject><subject>Pretreatment</subject><subject>Proliferation</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Receptor density</subject><subject>Receptors</subject><subject>RNA</subject><subject>Scavenger Receptors, Class E - physiology</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>THP-1 Cells</subject><subject>Toxicity</subject><subject>Umbilical vein</subject><subject>Uptake</subject><issn>1520-4081</issn><issn>1522-7278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kbtOwzAUhi0E4lIYeAFkiQWGUF-SOBlRgYIUqUuHbpETnyRGaVziBMjGI_CMPAnuBQYkFp-jo8-f7PMjdE7JDSWEjTvzfsOYCMgeOqYBY55gItrf9MTzSUSP0Im1z4SQOAzCQ3TEXcMFDY_RcipryDvdfH18cizLspWvsgOLzbubJHeJO3Wj-hwUhkaZroJayxqrwRZ94y6aBndVa_qywsls4WiKl6C0cyhsddnIWjclXsmuepPDKTooZG3hbFdHaP5wP588esls-jS5Tbycx4R4cQCKF4xlKgoC6kcxkwBxHOUsY1nhByCF4JQVgfs84ZlfACc-5FQWIlMi4iN0tdWuWvPSg-3SpbY51LVswPQ2ZYyEjDkvd-jlH_TZ9K179ZriPudEhGvqekvlrbG2hSJdtXop2yGlJF1HkLoI0k0Ejr3YGfvMbeKX_Nm5A8Zb4E3XMPxvSuezxVb5DUwDlC8</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Ou, Hsiu‐Chung</creator><creator>Chou, Wan‐Ching</creator><creator>Hung, Ching‐Hsia</creator><creator>Chu, Pei‐Ming</creator><creator>Hsieh, Pei‐Ling</creator><creator>Chan, Shih‐Hung</creator><creator>Tsai, Kun‐Ling</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M7N</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3814-1453</orcidid></search><sort><creationdate>201907</creationdate><title>Galectin‐3 aggravates ox‐LDL‐induced endothelial dysfunction through LOX‐1 mediated signaling pathway</title><author>Ou, Hsiu‐Chung ; Chou, Wan‐Ching ; Hung, Ching‐Hsia ; Chu, Pei‐Ming ; Hsieh, Pei‐Ling ; Chan, Shih‐Hung ; Tsai, Kun‐Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3900-95ed3f22bd85514892aee998c2b2bf45ea77312f500203b4fe304ec1af7bd783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Antibodies</topic><topic>Atherogenesis</topic><topic>Atherosclerosis - chemically induced</topic><topic>Atherosclerosis - metabolism</topic><topic>Atherosclerosis - pathology</topic><topic>Biomarkers</topic><topic>Cells, Cultured</topic><topic>Chemotaxis</topic><topic>Cytotoxicity</topic><topic>Drug Synergism</topic><topic>Endothelial cells</topic><topic>Endothelium, Vascular - drug effects</topic><topic>Galectin 3 - pharmacology</topic><topic>galectin‐3</topic><topic>Gene expression</topic><topic>Human Umbilical Vein Endothelial Cells - drug effects</topic><topic>Human Umbilical Vein Endothelial Cells - physiology</topic><topic>Humans</topic><topic>Incubation period</topic><topic>Inflammation</topic><topic>Inflammation - chemically induced</topic><topic>Inflammation - metabolism</topic><topic>Inflammation - pathology</topic><topic>Kinases</topic><topic>Lipoproteins</topic><topic>Lipoproteins, LDL - toxicity</topic><topic>Liquid oxygen</topic><topic>Low density lipoprotein</topic><topic>LOX‐1</topic><topic>Macrophages</topic><topic>Monocytes</topic><topic>NAD(P)H oxidase</topic><topic>NADPH oxidase</topic><topic>NADPH-diaphorase</topic><topic>NF-kappa B - metabolism</topic><topic>Nicotinamide</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Nucleic acids</topic><topic>Oxidase</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidative Stress - physiology</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phosphates</topic><topic>Pretreatment</topic><topic>Proliferation</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Receptor density</topic><topic>Receptors</topic><topic>RNA</topic><topic>Scavenger Receptors, Class E - physiology</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>THP-1 Cells</topic><topic>Toxicity</topic><topic>Umbilical vein</topic><topic>Uptake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ou, Hsiu‐Chung</creatorcontrib><creatorcontrib>Chou, Wan‐Ching</creatorcontrib><creatorcontrib>Hung, Ching‐Hsia</creatorcontrib><creatorcontrib>Chu, Pei‐Ming</creatorcontrib><creatorcontrib>Hsieh, Pei‐Ling</creatorcontrib><creatorcontrib>Chan, Shih‐Hung</creatorcontrib><creatorcontrib>Tsai, Kun‐Ling</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ou, Hsiu‐Chung</au><au>Chou, Wan‐Ching</au><au>Hung, Ching‐Hsia</au><au>Chu, Pei‐Ming</au><au>Hsieh, Pei‐Ling</au><au>Chan, Shih‐Hung</au><au>Tsai, Kun‐Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Galectin‐3 aggravates ox‐LDL‐induced endothelial dysfunction through LOX‐1 mediated signaling pathway</atitle><jtitle>Environmental toxicology</jtitle><addtitle>Environ Toxicol</addtitle><date>2019-07</date><risdate>2019</risdate><volume>34</volume><issue>7</issue><spage>825</spage><epage>835</epage><pages>825-835</pages><issn>1520-4081</issn><eissn>1522-7278</eissn><abstract>Galectin‐3, a biomarker linking oxidative stress and inflammation, participates in different mechanisms related to atherothrombosis, such as inflammation, proliferation, or macrophage chemotaxis. Accumulating evidence indicates that galectin‐3 may also promote atherogenesis through inducing endothelial dysfunction. Lectin‐like oxidized low‐density lipoprotein (oxLDL) receptor‐1 (LOX‐1), a receptor for oxLDL uptake, contributes to oxLDL‐induced endothelial dysfunction. Whether galectin‐3 induces endothelial dysfunction through modulation of LOX‐1‐mediated signaling remains unclear. In the present study, we explored the mechanisms underlying galectin‐3 enhanced cytotoxicity of oxLDL in human umbilical vein endothelial cells (HUVECs) and the role of LOX‐1. Incubation of HUVECs with galectin‐3 increased the expression of LOX‐1 in RNA and protein levels. In addition, the expression of LOX‐1 induced by oxLDL was promoted by galectin‐3. However, pretreatment of LOX‐1 antibody reduced LOX‐1 mRNA expression level in cells with oxLDL plus galectin‐3 incubation. Compared to cells treated with oxLDL alone, reactive oxygen species (ROS) generation via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and subsequent activation of p38 mitogen‐activated protein kinases followed by nuclear factor kappa B (NF‐κB) activation and related inflammatory responses including adhesion molecule expression, adhesiveness of monocytic cells, and IL‐8 release were also aggravated in cells treated with galectin‐3 combined with oxLDL. Compared to cells treated with galectin‐3 plus oxLDL group. We found that LOX‐1 antibody mitigated NADPH oxidase activity, p‐38 up‐regulation, NF‐κB activation, and proinflammatory responses in cells treated with galectin‐3 combined with oxLDL. We conclude that galectin‐3 enhances endothelial LOX‐1 expression and propose a new mechanism by which galectin‐3 may promote endothelial dysfunction by inducing inflammation via LOX‐1/ROS/p38/NF‐κB‐mediated signaling pathway.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30963716</pmid><doi>10.1002/tox.22750</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3814-1453</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-4081
ispartof Environmental toxicology, 2019-07, Vol.34 (7), p.825-835
issn 1520-4081
1522-7278
language eng
recordid cdi_proquest_miscellaneous_2206224893
source MEDLINE; Access via Wiley Online Library
subjects Activation
Antibodies
Atherogenesis
Atherosclerosis - chemically induced
Atherosclerosis - metabolism
Atherosclerosis - pathology
Biomarkers
Cells, Cultured
Chemotaxis
Cytotoxicity
Drug Synergism
Endothelial cells
Endothelium, Vascular - drug effects
Galectin 3 - pharmacology
galectin‐3
Gene expression
Human Umbilical Vein Endothelial Cells - drug effects
Human Umbilical Vein Endothelial Cells - physiology
Humans
Incubation period
Inflammation
Inflammation - chemically induced
Inflammation - metabolism
Inflammation - pathology
Kinases
Lipoproteins
Lipoproteins, LDL - toxicity
Liquid oxygen
Low density lipoprotein
LOX‐1
Macrophages
Monocytes
NAD(P)H oxidase
NADPH oxidase
NADPH-diaphorase
NF-kappa B - metabolism
Nicotinamide
Nicotinamide adenine dinucleotide
Nucleic acids
Oxidase
Oxidative stress
Oxidative Stress - drug effects
Oxidative Stress - physiology
p38 Mitogen-Activated Protein Kinases - metabolism
Phosphates
Pretreatment
Proliferation
Proteins
Reactive oxygen species
Reactive Oxygen Species - metabolism
Receptor density
Receptors
RNA
Scavenger Receptors, Class E - physiology
Signal transduction
Signal Transduction - drug effects
Signaling
THP-1 Cells
Toxicity
Umbilical vein
Uptake
title Galectin‐3 aggravates ox‐LDL‐induced endothelial dysfunction through LOX‐1 mediated signaling pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Galectin%E2%80%903%20aggravates%20ox%E2%80%90LDL%E2%80%90induced%20endothelial%20dysfunction%20through%20LOX%E2%80%901%20mediated%20signaling%20pathway&rft.jtitle=Environmental%20toxicology&rft.au=Ou,%20Hsiu%E2%80%90Chung&rft.date=2019-07&rft.volume=34&rft.issue=7&rft.spage=825&rft.epage=835&rft.pages=825-835&rft.issn=1520-4081&rft.eissn=1522-7278&rft_id=info:doi/10.1002/tox.22750&rft_dat=%3Cproquest_cross%3E2206224893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2234330763&rft_id=info:pmid/30963716&rfr_iscdi=true