Versatile and High-Throughput Polyelectrolyte Complex Membranes via Phase Inversion

High-flux filtration membranes constructed through scalable and sustainable methods are desirable for energy-efficient separations. Often, these criteria are difficult to be reconciled with one another. Polymeric membranes can provide high flux but frequently involve organic solvents in processing s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-05, Vol.11 (17), p.16018-16026
Hauptverfasser: Sadman, Kazi, Delgado, David E, Won, Yechan, Wang, Qifeng, Gray, Kimberly A, Shull, Kenneth R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16026
container_issue 17
container_start_page 16018
container_title ACS applied materials & interfaces
container_volume 11
creator Sadman, Kazi
Delgado, David E
Won, Yechan
Wang, Qifeng
Gray, Kimberly A
Shull, Kenneth R
description High-flux filtration membranes constructed through scalable and sustainable methods are desirable for energy-efficient separations. Often, these criteria are difficult to be reconciled with one another. Polymeric membranes can provide high flux but frequently involve organic solvents in processing steps. Solubility of many polymeric membranes in organic media also restricts their implementation in solvent filtration. In the present work, we report a simple and high-throughput aqueous processing approach for polyelectrolyte complex (PEC) membranes with controllable porosity and stability in various aqueous and organic environments. PECs are materials composed of oppositely charged polymer chains that can form solids in aqueous environments, yet which can be dissolved in very specific salt solutions capable of breaking the interpolymer ion pairs. By exploiting the salt-induced dissolution and subsequent reformation of the complex, nano- to microporous films are rapidly synthesized which resemble membranes obtained through conventional solvent-phase inversion techniques. PECs remain stable in organic solvents because of the low dielectric constant of the environment, which enhances electrostatic interactions, making them suitable for a wide range of water and solvent filtration applications. Here, we elucidate how the polymer-phase behavior can be manipulated to exercise morphological control, test membrane performance for water and solvent filtration, and quantify the mechanical stability of PECs in relevant conditions.
doi_str_mv 10.1021/acsami.9b02115
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2206223940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2206223940</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-8ba2c866aab6b9db96349caecb2c2907ba5c46064faf90cebbd63c02f69d56003</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMoTqdXj5KjCJ1pmsblKEPdYOLA6TW8pOnW0TY1aYf7783o3M3T-x78vo_3PoRuYjKKCY0fQHuoipFQYYnTE3QRC8aiMU3p6VEzNkCX3m8I4Qkl6TkaJERwFpgL9PFlnIe2KA2GOsPTYrWOlmtnu9W66Vq8sOXOlEa3LojW4ImtmtL84DdTKQe18XhbAF6swRs8q7chq7D1FTrLofTm-jCH6PPleTmZRvP319nkaR5BIngbjRVQPeYcQHElMiV4woQGoxXVVJBHBalmnHCWQy6INkplPNGE5lxkKSckGaK7Prdx9rszvpVV4bUpy3CY7byklHBKE8H26KhHtbPeO5PLxhUVuJ2MidwXKfsi5aHIYLg9ZHeqMtkR_2suAPc9EIxyYztXh1f_S_sFk_Z-9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206223940</pqid></control><display><type>article</type><title>Versatile and High-Throughput Polyelectrolyte Complex Membranes via Phase Inversion</title><source>ACS Journals: American Chemical Society Web Editions</source><creator>Sadman, Kazi ; Delgado, David E ; Won, Yechan ; Wang, Qifeng ; Gray, Kimberly A ; Shull, Kenneth R</creator><creatorcontrib>Sadman, Kazi ; Delgado, David E ; Won, Yechan ; Wang, Qifeng ; Gray, Kimberly A ; Shull, Kenneth R</creatorcontrib><description>High-flux filtration membranes constructed through scalable and sustainable methods are desirable for energy-efficient separations. Often, these criteria are difficult to be reconciled with one another. Polymeric membranes can provide high flux but frequently involve organic solvents in processing steps. Solubility of many polymeric membranes in organic media also restricts their implementation in solvent filtration. In the present work, we report a simple and high-throughput aqueous processing approach for polyelectrolyte complex (PEC) membranes with controllable porosity and stability in various aqueous and organic environments. PECs are materials composed of oppositely charged polymer chains that can form solids in aqueous environments, yet which can be dissolved in very specific salt solutions capable of breaking the interpolymer ion pairs. By exploiting the salt-induced dissolution and subsequent reformation of the complex, nano- to microporous films are rapidly synthesized which resemble membranes obtained through conventional solvent-phase inversion techniques. PECs remain stable in organic solvents because of the low dielectric constant of the environment, which enhances electrostatic interactions, making them suitable for a wide range of water and solvent filtration applications. Here, we elucidate how the polymer-phase behavior can be manipulated to exercise morphological control, test membrane performance for water and solvent filtration, and quantify the mechanical stability of PECs in relevant conditions.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b02115</identifier><identifier>PMID: 30964252</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2019-05, Vol.11 (17), p.16018-16026</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-8ba2c866aab6b9db96349caecb2c2907ba5c46064faf90cebbd63c02f69d56003</citedby><cites>FETCH-LOGICAL-a396t-8ba2c866aab6b9db96349caecb2c2907ba5c46064faf90cebbd63c02f69d56003</cites><orcidid>0000-0002-8027-900X ; 0000-0003-2872-752X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b02115$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b02115$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30964252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadman, Kazi</creatorcontrib><creatorcontrib>Delgado, David E</creatorcontrib><creatorcontrib>Won, Yechan</creatorcontrib><creatorcontrib>Wang, Qifeng</creatorcontrib><creatorcontrib>Gray, Kimberly A</creatorcontrib><creatorcontrib>Shull, Kenneth R</creatorcontrib><title>Versatile and High-Throughput Polyelectrolyte Complex Membranes via Phase Inversion</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>High-flux filtration membranes constructed through scalable and sustainable methods are desirable for energy-efficient separations. Often, these criteria are difficult to be reconciled with one another. Polymeric membranes can provide high flux but frequently involve organic solvents in processing steps. Solubility of many polymeric membranes in organic media also restricts their implementation in solvent filtration. In the present work, we report a simple and high-throughput aqueous processing approach for polyelectrolyte complex (PEC) membranes with controllable porosity and stability in various aqueous and organic environments. PECs are materials composed of oppositely charged polymer chains that can form solids in aqueous environments, yet which can be dissolved in very specific salt solutions capable of breaking the interpolymer ion pairs. By exploiting the salt-induced dissolution and subsequent reformation of the complex, nano- to microporous films are rapidly synthesized which resemble membranes obtained through conventional solvent-phase inversion techniques. PECs remain stable in organic solvents because of the low dielectric constant of the environment, which enhances electrostatic interactions, making them suitable for a wide range of water and solvent filtration applications. Here, we elucidate how the polymer-phase behavior can be manipulated to exercise morphological control, test membrane performance for water and solvent filtration, and quantify the mechanical stability of PECs in relevant conditions.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMoTqdXj5KjCJ1pmsblKEPdYOLA6TW8pOnW0TY1aYf7783o3M3T-x78vo_3PoRuYjKKCY0fQHuoipFQYYnTE3QRC8aiMU3p6VEzNkCX3m8I4Qkl6TkaJERwFpgL9PFlnIe2KA2GOsPTYrWOlmtnu9W66Vq8sOXOlEa3LojW4ImtmtL84DdTKQe18XhbAF6swRs8q7chq7D1FTrLofTm-jCH6PPleTmZRvP319nkaR5BIngbjRVQPeYcQHElMiV4woQGoxXVVJBHBalmnHCWQy6INkplPNGE5lxkKSckGaK7Prdx9rszvpVV4bUpy3CY7byklHBKE8H26KhHtbPeO5PLxhUVuJ2MidwXKfsi5aHIYLg9ZHeqMtkR_2suAPc9EIxyYztXh1f_S_sFk_Z-9w</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Sadman, Kazi</creator><creator>Delgado, David E</creator><creator>Won, Yechan</creator><creator>Wang, Qifeng</creator><creator>Gray, Kimberly A</creator><creator>Shull, Kenneth R</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8027-900X</orcidid><orcidid>https://orcid.org/0000-0003-2872-752X</orcidid></search><sort><creationdate>20190501</creationdate><title>Versatile and High-Throughput Polyelectrolyte Complex Membranes via Phase Inversion</title><author>Sadman, Kazi ; Delgado, David E ; Won, Yechan ; Wang, Qifeng ; Gray, Kimberly A ; Shull, Kenneth R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-8ba2c866aab6b9db96349caecb2c2907ba5c46064faf90cebbd63c02f69d56003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadman, Kazi</creatorcontrib><creatorcontrib>Delgado, David E</creatorcontrib><creatorcontrib>Won, Yechan</creatorcontrib><creatorcontrib>Wang, Qifeng</creatorcontrib><creatorcontrib>Gray, Kimberly A</creatorcontrib><creatorcontrib>Shull, Kenneth R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadman, Kazi</au><au>Delgado, David E</au><au>Won, Yechan</au><au>Wang, Qifeng</au><au>Gray, Kimberly A</au><au>Shull, Kenneth R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Versatile and High-Throughput Polyelectrolyte Complex Membranes via Phase Inversion</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>11</volume><issue>17</issue><spage>16018</spage><epage>16026</epage><pages>16018-16026</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>High-flux filtration membranes constructed through scalable and sustainable methods are desirable for energy-efficient separations. Often, these criteria are difficult to be reconciled with one another. Polymeric membranes can provide high flux but frequently involve organic solvents in processing steps. Solubility of many polymeric membranes in organic media also restricts their implementation in solvent filtration. In the present work, we report a simple and high-throughput aqueous processing approach for polyelectrolyte complex (PEC) membranes with controllable porosity and stability in various aqueous and organic environments. PECs are materials composed of oppositely charged polymer chains that can form solids in aqueous environments, yet which can be dissolved in very specific salt solutions capable of breaking the interpolymer ion pairs. By exploiting the salt-induced dissolution and subsequent reformation of the complex, nano- to microporous films are rapidly synthesized which resemble membranes obtained through conventional solvent-phase inversion techniques. PECs remain stable in organic solvents because of the low dielectric constant of the environment, which enhances electrostatic interactions, making them suitable for a wide range of water and solvent filtration applications. Here, we elucidate how the polymer-phase behavior can be manipulated to exercise morphological control, test membrane performance for water and solvent filtration, and quantify the mechanical stability of PECs in relevant conditions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30964252</pmid><doi>10.1021/acsami.9b02115</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8027-900X</orcidid><orcidid>https://orcid.org/0000-0003-2872-752X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-05, Vol.11 (17), p.16018-16026
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2206223940
source ACS Journals: American Chemical Society Web Editions
title Versatile and High-Throughput Polyelectrolyte Complex Membranes via Phase Inversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T06%3A09%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Versatile%20and%20High-Throughput%20Polyelectrolyte%20Complex%20Membranes%20via%20Phase%20Inversion&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Sadman,%20Kazi&rft.date=2019-05-01&rft.volume=11&rft.issue=17&rft.spage=16018&rft.epage=16026&rft.pages=16018-16026&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b02115&rft_dat=%3Cproquest_cross%3E2206223940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206223940&rft_id=info:pmid/30964252&rfr_iscdi=true