QRS Vector Magnitude as Predictor of Ventricular Arrhythmia in Patients With Brugada Syndrome

Risk stratification is the most challenging part in management of patients with Brugada syndrome (BrS). Conduction delay in the right ventricular outflow tract (RVOT) is the major mechanism underlying ventricular tachyarrhythmia (VTA) in BrS. However, QRS duration was not useful in stratifying high-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of cardiology 2019-06, Vol.123 (12), p.1962-1966
Hauptverfasser: Ragab, Ahmed A.Y., Houck, Charlotte A., van der Does, Lisette J.M.E., Lanters, Eva A.H., Muskens, Agnes J.Q.M., de Groot, Natasja M.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1966
container_issue 12
container_start_page 1962
container_title The American journal of cardiology
container_volume 123
creator Ragab, Ahmed A.Y.
Houck, Charlotte A.
van der Does, Lisette J.M.E.
Lanters, Eva A.H.
Muskens, Agnes J.Q.M.
de Groot, Natasja M.S.
description Risk stratification is the most challenging part in management of patients with Brugada syndrome (BrS). Conduction delay in the right ventricular outflow tract (RVOT) is the major mechanism underlying ventricular tachyarrhythmia (VTA) in BrS. However, QRS duration was not useful in stratifying high-risk patients in large registries. Reconstructing the traditional 12-lead electrocardiogram into QRS vector magnitude can be used to quantify depolarization dispersion and identify high-risk BrS patients. The aim of the study is to test the significance of the QRSvm as a predictor for VTA in patients with BrS. In this retrospective cohort, we included 136 patients (47 ± 15 years, 66% male) who visited outpatient clinic for cardiogenetic screening. All medical records were examined, all 12- lead electrocardiograms were reconstructed into QRSvm using Kors' quasiorthogonal method and were assessed for the presence of electrocardiographic signs indicative of RVOT conduction delay including R wave sign, deep SI, SII >SIII pattern, and Tzou criteria. QRSvm was significantly lower in patients who either presented with VTA or developed VTA during follow-up (1.24 ± 0.35 vs 1.78 ± 0.42 mV, p < 0.001). Positive RVOT conduction delay signs occurred more frequently in symptomatic patients (20% vs 7%, p < 0.001).The area under receiver operator characteristic curve for QRSvm was 0.85 (95% confidence interval [CI] 0.77 to 0.92). Using QRSvm cutoff of 1.55 mV, sensitivity and specificity were 89% and 71%, respectively. Multivariate regression analysis showed that QRSvm and RVOT signs are independent predictors for VTA in BrS patients (QRS vector magnitude: odds ratio 3.68, 95% CI 2.4 to 6.2, p = 0.001; RVOT: odds ratio 2.6, 95% CI 1.4 to 4.9, p = 0.001). In conclusion, not only electrocardiographic signs indicative of RVOT conduction delay but also QRSvm can be used as a predictor for VTA events in BrS patients.
doi_str_mv 10.1016/j.amjcard.2019.03.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2205413094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002914919303157</els_id><sourcerecordid>2205413094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-7902acf406552b62277233145b32726820a0b04f7391ed30e6ed96a834f98c1a3</originalsourceid><addsrcrecordid>eNqFkUtv1DAQgK0KRLeFn0BliUsvCeNHnPhUlaoFpFYUCuWELK_tdB1tkjJOkPbf47JLD730NPL4m4c_E_KWQcmAqfddafvOWfQlB6ZLECWwZo8sWFPrgmkmXpAFAPBCM6n3yUFKXT4yVqlXZF-ArqpGyQX59fXbDb0NbhqRXtm7IU6zD9Qmeo3Bx3_psc3AMGF089oiPUVcbaZVHy2NA722U8yXif6M04p-wPnOektvNoPHsQ-vycvWrlN4s4uH5MfF-fezT8Xll4-fz04vCyclTEWtgVvXSlBVxZeK87rmQjBZLQWvuWo4WFiCbGuhWfACggpeK9sI2erGMSsOyfG27z2Ov-eQJtPH5MJ6bYcwzslwDpVk-dUyo--eoN0445C3yxRXNTRQ60xVW8rhmBKG1txj7C1uDAPz4N90ZuffPPg3IEz2n-uOdt3nZR_8Y9V_4Rk42QIh6_gTA5rkskCXZWP-BePH-MyIv2P8luM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226708079</pqid></control><display><type>article</type><title>QRS Vector Magnitude as Predictor of Ventricular Arrhythmia in Patients With Brugada Syndrome</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ragab, Ahmed A.Y. ; Houck, Charlotte A. ; van der Does, Lisette J.M.E. ; Lanters, Eva A.H. ; Muskens, Agnes J.Q.M. ; de Groot, Natasja M.S.</creator><creatorcontrib>Ragab, Ahmed A.Y. ; Houck, Charlotte A. ; van der Does, Lisette J.M.E. ; Lanters, Eva A.H. ; Muskens, Agnes J.Q.M. ; de Groot, Natasja M.S.</creatorcontrib><description>Risk stratification is the most challenging part in management of patients with Brugada syndrome (BrS). Conduction delay in the right ventricular outflow tract (RVOT) is the major mechanism underlying ventricular tachyarrhythmia (VTA) in BrS. However, QRS duration was not useful in stratifying high-risk patients in large registries. Reconstructing the traditional 12-lead electrocardiogram into QRS vector magnitude can be used to quantify depolarization dispersion and identify high-risk BrS patients. The aim of the study is to test the significance of the QRSvm as a predictor for VTA in patients with BrS. In this retrospective cohort, we included 136 patients (47 ± 15 years, 66% male) who visited outpatient clinic for cardiogenetic screening. All medical records were examined, all 12- lead electrocardiograms were reconstructed into QRSvm using Kors' quasiorthogonal method and were assessed for the presence of electrocardiographic signs indicative of RVOT conduction delay including R wave sign, deep SI, SII &gt;SIII pattern, and Tzou criteria. QRSvm was significantly lower in patients who either presented with VTA or developed VTA during follow-up (1.24 ± 0.35 vs 1.78 ± 0.42 mV, p &lt; 0.001). Positive RVOT conduction delay signs occurred more frequently in symptomatic patients (20% vs 7%, p &lt; 0.001).The area under receiver operator characteristic curve for QRSvm was 0.85 (95% confidence interval [CI] 0.77 to 0.92). Using QRSvm cutoff of 1.55 mV, sensitivity and specificity were 89% and 71%, respectively. Multivariate regression analysis showed that QRSvm and RVOT signs are independent predictors for VTA in BrS patients (QRS vector magnitude: odds ratio 3.68, 95% CI 2.4 to 6.2, p = 0.001; RVOT: odds ratio 2.6, 95% CI 1.4 to 4.9, p = 0.001). In conclusion, not only electrocardiographic signs indicative of RVOT conduction delay but also QRSvm can be used as a predictor for VTA events in BrS patients.</description><identifier>ISSN: 0002-9149</identifier><identifier>EISSN: 1879-1913</identifier><identifier>DOI: 10.1016/j.amjcard.2019.03.018</identifier><identifier>PMID: 30955864</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Age ; Arrhythmia ; Brugada Syndrome - complications ; Brugada Syndrome - physiopathology ; Cardiac arrhythmia ; Chronic obstructive pulmonary disease ; Conduction ; Confidence intervals ; Delay ; Depolarization ; EKG ; Electrocardiography ; Female ; Heart ; Heart Conduction System - physiopathology ; Humans ; Male ; Medical records ; Middle Aged ; Morphology ; Outpatient care facilities ; Patients ; Population ; Regression analysis ; Retrospective Studies ; Risk ; Risk groups ; Sensitivity analysis ; Sensitivity and Specificity ; Statistical analysis ; Tachyarrhythmia ; Tachycardia, Ventricular - diagnosis ; Tachycardia, Ventricular - etiology ; Tachycardia, Ventricular - physiopathology ; Ventricle</subject><ispartof>The American journal of cardiology, 2019-06, Vol.123 (12), p.1962-1966</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>2019. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-7902acf406552b62277233145b32726820a0b04f7391ed30e6ed96a834f98c1a3</citedby><cites>FETCH-LOGICAL-c440t-7902acf406552b62277233145b32726820a0b04f7391ed30e6ed96a834f98c1a3</cites><orcidid>0000-0002-0259-6691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0002914919303157$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30955864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ragab, Ahmed A.Y.</creatorcontrib><creatorcontrib>Houck, Charlotte A.</creatorcontrib><creatorcontrib>van der Does, Lisette J.M.E.</creatorcontrib><creatorcontrib>Lanters, Eva A.H.</creatorcontrib><creatorcontrib>Muskens, Agnes J.Q.M.</creatorcontrib><creatorcontrib>de Groot, Natasja M.S.</creatorcontrib><title>QRS Vector Magnitude as Predictor of Ventricular Arrhythmia in Patients With Brugada Syndrome</title><title>The American journal of cardiology</title><addtitle>Am J Cardiol</addtitle><description>Risk stratification is the most challenging part in management of patients with Brugada syndrome (BrS). Conduction delay in the right ventricular outflow tract (RVOT) is the major mechanism underlying ventricular tachyarrhythmia (VTA) in BrS. However, QRS duration was not useful in stratifying high-risk patients in large registries. Reconstructing the traditional 12-lead electrocardiogram into QRS vector magnitude can be used to quantify depolarization dispersion and identify high-risk BrS patients. The aim of the study is to test the significance of the QRSvm as a predictor for VTA in patients with BrS. In this retrospective cohort, we included 136 patients (47 ± 15 years, 66% male) who visited outpatient clinic for cardiogenetic screening. All medical records were examined, all 12- lead electrocardiograms were reconstructed into QRSvm using Kors' quasiorthogonal method and were assessed for the presence of electrocardiographic signs indicative of RVOT conduction delay including R wave sign, deep SI, SII &gt;SIII pattern, and Tzou criteria. QRSvm was significantly lower in patients who either presented with VTA or developed VTA during follow-up (1.24 ± 0.35 vs 1.78 ± 0.42 mV, p &lt; 0.001). Positive RVOT conduction delay signs occurred more frequently in symptomatic patients (20% vs 7%, p &lt; 0.001).The area under receiver operator characteristic curve for QRSvm was 0.85 (95% confidence interval [CI] 0.77 to 0.92). Using QRSvm cutoff of 1.55 mV, sensitivity and specificity were 89% and 71%, respectively. Multivariate regression analysis showed that QRSvm and RVOT signs are independent predictors for VTA in BrS patients (QRS vector magnitude: odds ratio 3.68, 95% CI 2.4 to 6.2, p = 0.001; RVOT: odds ratio 2.6, 95% CI 1.4 to 4.9, p = 0.001). In conclusion, not only electrocardiographic signs indicative of RVOT conduction delay but also QRSvm can be used as a predictor for VTA events in BrS patients.</description><subject>Adult</subject><subject>Age</subject><subject>Arrhythmia</subject><subject>Brugada Syndrome - complications</subject><subject>Brugada Syndrome - physiopathology</subject><subject>Cardiac arrhythmia</subject><subject>Chronic obstructive pulmonary disease</subject><subject>Conduction</subject><subject>Confidence intervals</subject><subject>Delay</subject><subject>Depolarization</subject><subject>EKG</subject><subject>Electrocardiography</subject><subject>Female</subject><subject>Heart</subject><subject>Heart Conduction System - physiopathology</subject><subject>Humans</subject><subject>Male</subject><subject>Medical records</subject><subject>Middle Aged</subject><subject>Morphology</subject><subject>Outpatient care facilities</subject><subject>Patients</subject><subject>Population</subject><subject>Regression analysis</subject><subject>Retrospective Studies</subject><subject>Risk</subject><subject>Risk groups</subject><subject>Sensitivity analysis</subject><subject>Sensitivity and Specificity</subject><subject>Statistical analysis</subject><subject>Tachyarrhythmia</subject><subject>Tachycardia, Ventricular - diagnosis</subject><subject>Tachycardia, Ventricular - etiology</subject><subject>Tachycardia, Ventricular - physiopathology</subject><subject>Ventricle</subject><issn>0002-9149</issn><issn>1879-1913</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtv1DAQgK0KRLeFn0BliUsvCeNHnPhUlaoFpFYUCuWELK_tdB1tkjJOkPbf47JLD730NPL4m4c_E_KWQcmAqfddafvOWfQlB6ZLECWwZo8sWFPrgmkmXpAFAPBCM6n3yUFKXT4yVqlXZF-ArqpGyQX59fXbDb0NbhqRXtm7IU6zD9Qmeo3Bx3_psc3AMGF089oiPUVcbaZVHy2NA722U8yXif6M04p-wPnOektvNoPHsQ-vycvWrlN4s4uH5MfF-fezT8Xll4-fz04vCyclTEWtgVvXSlBVxZeK87rmQjBZLQWvuWo4WFiCbGuhWfACggpeK9sI2erGMSsOyfG27z2Ov-eQJtPH5MJ6bYcwzslwDpVk-dUyo--eoN0445C3yxRXNTRQ60xVW8rhmBKG1txj7C1uDAPz4N90ZuffPPg3IEz2n-uOdt3nZR_8Y9V_4Rk42QIh6_gTA5rkskCXZWP-BePH-MyIv2P8luM</recordid><startdate>20190615</startdate><enddate>20190615</enddate><creator>Ragab, Ahmed A.Y.</creator><creator>Houck, Charlotte A.</creator><creator>van der Does, Lisette J.M.E.</creator><creator>Lanters, Eva A.H.</creator><creator>Muskens, Agnes J.Q.M.</creator><creator>de Groot, Natasja M.S.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0259-6691</orcidid></search><sort><creationdate>20190615</creationdate><title>QRS Vector Magnitude as Predictor of Ventricular Arrhythmia in Patients With Brugada Syndrome</title><author>Ragab, Ahmed A.Y. ; Houck, Charlotte A. ; van der Does, Lisette J.M.E. ; Lanters, Eva A.H. ; Muskens, Agnes J.Q.M. ; de Groot, Natasja M.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-7902acf406552b62277233145b32726820a0b04f7391ed30e6ed96a834f98c1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Age</topic><topic>Arrhythmia</topic><topic>Brugada Syndrome - complications</topic><topic>Brugada Syndrome - physiopathology</topic><topic>Cardiac arrhythmia</topic><topic>Chronic obstructive pulmonary disease</topic><topic>Conduction</topic><topic>Confidence intervals</topic><topic>Delay</topic><topic>Depolarization</topic><topic>EKG</topic><topic>Electrocardiography</topic><topic>Female</topic><topic>Heart</topic><topic>Heart Conduction System - physiopathology</topic><topic>Humans</topic><topic>Male</topic><topic>Medical records</topic><topic>Middle Aged</topic><topic>Morphology</topic><topic>Outpatient care facilities</topic><topic>Patients</topic><topic>Population</topic><topic>Regression analysis</topic><topic>Retrospective Studies</topic><topic>Risk</topic><topic>Risk groups</topic><topic>Sensitivity analysis</topic><topic>Sensitivity and Specificity</topic><topic>Statistical analysis</topic><topic>Tachyarrhythmia</topic><topic>Tachycardia, Ventricular - diagnosis</topic><topic>Tachycardia, Ventricular - etiology</topic><topic>Tachycardia, Ventricular - physiopathology</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ragab, Ahmed A.Y.</creatorcontrib><creatorcontrib>Houck, Charlotte A.</creatorcontrib><creatorcontrib>van der Does, Lisette J.M.E.</creatorcontrib><creatorcontrib>Lanters, Eva A.H.</creatorcontrib><creatorcontrib>Muskens, Agnes J.Q.M.</creatorcontrib><creatorcontrib>de Groot, Natasja M.S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>The American journal of cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ragab, Ahmed A.Y.</au><au>Houck, Charlotte A.</au><au>van der Does, Lisette J.M.E.</au><au>Lanters, Eva A.H.</au><au>Muskens, Agnes J.Q.M.</au><au>de Groot, Natasja M.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QRS Vector Magnitude as Predictor of Ventricular Arrhythmia in Patients With Brugada Syndrome</atitle><jtitle>The American journal of cardiology</jtitle><addtitle>Am J Cardiol</addtitle><date>2019-06-15</date><risdate>2019</risdate><volume>123</volume><issue>12</issue><spage>1962</spage><epage>1966</epage><pages>1962-1966</pages><issn>0002-9149</issn><eissn>1879-1913</eissn><abstract>Risk stratification is the most challenging part in management of patients with Brugada syndrome (BrS). Conduction delay in the right ventricular outflow tract (RVOT) is the major mechanism underlying ventricular tachyarrhythmia (VTA) in BrS. However, QRS duration was not useful in stratifying high-risk patients in large registries. Reconstructing the traditional 12-lead electrocardiogram into QRS vector magnitude can be used to quantify depolarization dispersion and identify high-risk BrS patients. The aim of the study is to test the significance of the QRSvm as a predictor for VTA in patients with BrS. In this retrospective cohort, we included 136 patients (47 ± 15 years, 66% male) who visited outpatient clinic for cardiogenetic screening. All medical records were examined, all 12- lead electrocardiograms were reconstructed into QRSvm using Kors' quasiorthogonal method and were assessed for the presence of electrocardiographic signs indicative of RVOT conduction delay including R wave sign, deep SI, SII &gt;SIII pattern, and Tzou criteria. QRSvm was significantly lower in patients who either presented with VTA or developed VTA during follow-up (1.24 ± 0.35 vs 1.78 ± 0.42 mV, p &lt; 0.001). Positive RVOT conduction delay signs occurred more frequently in symptomatic patients (20% vs 7%, p &lt; 0.001).The area under receiver operator characteristic curve for QRSvm was 0.85 (95% confidence interval [CI] 0.77 to 0.92). Using QRSvm cutoff of 1.55 mV, sensitivity and specificity were 89% and 71%, respectively. Multivariate regression analysis showed that QRSvm and RVOT signs are independent predictors for VTA in BrS patients (QRS vector magnitude: odds ratio 3.68, 95% CI 2.4 to 6.2, p = 0.001; RVOT: odds ratio 2.6, 95% CI 1.4 to 4.9, p = 0.001). In conclusion, not only electrocardiographic signs indicative of RVOT conduction delay but also QRSvm can be used as a predictor for VTA events in BrS patients.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30955864</pmid><doi>10.1016/j.amjcard.2019.03.018</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0259-6691</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9149
ispartof The American journal of cardiology, 2019-06, Vol.123 (12), p.1962-1966
issn 0002-9149
1879-1913
language eng
recordid cdi_proquest_miscellaneous_2205413094
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Age
Arrhythmia
Brugada Syndrome - complications
Brugada Syndrome - physiopathology
Cardiac arrhythmia
Chronic obstructive pulmonary disease
Conduction
Confidence intervals
Delay
Depolarization
EKG
Electrocardiography
Female
Heart
Heart Conduction System - physiopathology
Humans
Male
Medical records
Middle Aged
Morphology
Outpatient care facilities
Patients
Population
Regression analysis
Retrospective Studies
Risk
Risk groups
Sensitivity analysis
Sensitivity and Specificity
Statistical analysis
Tachyarrhythmia
Tachycardia, Ventricular - diagnosis
Tachycardia, Ventricular - etiology
Tachycardia, Ventricular - physiopathology
Ventricle
title QRS Vector Magnitude as Predictor of Ventricular Arrhythmia in Patients With Brugada Syndrome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QRS%20Vector%20Magnitude%20as%20Predictor%20of%20Ventricular%20Arrhythmia%20in%20Patients%20With%20Brugada%20Syndrome&rft.jtitle=The%20American%20journal%20of%20cardiology&rft.au=Ragab,%20Ahmed%20A.Y.&rft.date=2019-06-15&rft.volume=123&rft.issue=12&rft.spage=1962&rft.epage=1966&rft.pages=1962-1966&rft.issn=0002-9149&rft.eissn=1879-1913&rft_id=info:doi/10.1016/j.amjcard.2019.03.018&rft_dat=%3Cproquest_cross%3E2205413094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2226708079&rft_id=info:pmid/30955864&rft_els_id=S0002914919303157&rfr_iscdi=true