Identifying Ventricular Arrhythmias and Their Predictors by Applying Machine Learning Methods to Electronic Health Records in Patients With Hypertrophic Cardiomyopathy (HCM-VAr-Risk Model)

Clinical risk stratification for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HC) employs rules derived from American College of Cardiology Foundation/American Heart Association (ACCF/AHA) guidelines or the HCM Risk-SCD model (C-index ∼0.69), which utilize a few clinical variables. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of cardiology 2019-05, Vol.123 (10), p.1681-1689
Hauptverfasser: Bhattacharya, Moumita, Lu, Dai-Yin, Kudchadkar, Shibani M., Greenland, Gabriela Villarreal, Lingamaneni, Prasanth, Corona-Villalobos, Celia P., Guan, Yufan, Marine, Joseph E., Olgin, Jeffrey E., Zimmerman, Stefan, Abraham, Theodore P., Shatkay, Hagit, Abraham, Maria Roselle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1689
container_issue 10
container_start_page 1681
container_title The American journal of cardiology
container_volume 123
creator Bhattacharya, Moumita
Lu, Dai-Yin
Kudchadkar, Shibani M.
Greenland, Gabriela Villarreal
Lingamaneni, Prasanth
Corona-Villalobos, Celia P.
Guan, Yufan
Marine, Joseph E.
Olgin, Jeffrey E.
Zimmerman, Stefan
Abraham, Theodore P.
Shatkay, Hagit
Abraham, Maria Roselle
description Clinical risk stratification for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HC) employs rules derived from American College of Cardiology Foundation/American Heart Association (ACCF/AHA) guidelines or the HCM Risk-SCD model (C-index ∼0.69), which utilize a few clinical variables. We assessed whether data-driven machine learning methods that consider a wider range of variables can effectively identify HC patients with ventricular arrhythmias (VAr) that lead to SCD. We scanned the electronic health records of 711 HC patients for sustained ventricular tachycardia or ventricular fibrillation. Patients with ventricular tachycardia or ventricular fibrillation (n = 61) were tagged as VAr cases and the remaining (n = 650) as non-VAr. The 2-sample ttest and information gain criterion were used to identify the most informative clinical variables that distinguish VAr from non-VAr; patient records were reduced to include only these variables. Data imbalance stemming from low number of VAr cases was addressed by applying a combination of over- and undersampling strategies. We trained and tested multiple classifiers under this sampling approach, showing effective classification. We evaluated 93 clinical variables, of which 22 proved predictive of VAr. The ensemble of logistic regression and naïve Bayes classifiers, trained based on these 22 variables and corrected for data imbalance, was most effective in separating VAr from non-VAr cases (sensitivity = 0.73, specificity = 0.76, C-index = 0.83). Our method (HCM-VAr-Risk Model) identified 12 new predictors of VAr, in addition to 10 established SCD predictors. In conclusion, this is the first application of machine learning for identifying HC patients with VAr, using clinical attributes. Our model demonstrates good performance (C-index) compared with currently employed SCD prediction algorithms, while addressing imbalance inherent in clinical data.
doi_str_mv 10.1016/j.amjcard.2019.02.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2204697893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002914919302279</els_id><sourcerecordid>2214951439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-82c5f5a3832704bf61c9fae099c2b646d0f9785988d2f8af3c9121e420cdd2243</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEotvCTwBZ4lIOWWznY-MTWq0KW2lXVFUpR8trT4hDEgfbQcp_649j2l04cEEayR_zvDP2vEnyhtElo6z80C5V32rlzZJTJpaUY_BnyYJVK5EywbLnyYJSylPBcnGWnIfQ4pGxonyZnGVUFDyr-CJ5uDYwRFvPdvhO7nHrrZ465cna-2aOTW9VIGow5K4B68mNB2N1dD6Qw0zW49g9CfdKN3YAsgPlh6cLiI0zgURHrjrQ0bvBarIF1cWG3IJ2HpN2IDcqWmwayDeLie08gkd2bBDe4N-s62c3qtjM5HK72af3a5_e2vCD7J2B7v2r5EWtugCvT-tF8vXT1d1mm-6-fL7erHepznMa04rroi5UVmV8RfNDXTItagVUCM0PZV4aWotVVYiqMryuVJ1pwTiDnFNtDOd5dpFcHuuO3v2cIETZ26Ch69QAbgqSc5qXWEJkiL77B23d5Ad8HVLoRMHyTCBVHCntXQgeajl62ys_S0blo72ylSd75aO9knIMjrq3p-rToQfzV_XHTwQ-HgHAcfyy4GXQOGCNrnm0QRpn_9PiNxNluwM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2214951439</pqid></control><display><type>article</type><title>Identifying Ventricular Arrhythmias and Their Predictors by Applying Machine Learning Methods to Electronic Health Records in Patients With Hypertrophic Cardiomyopathy (HCM-VAr-Risk Model)</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bhattacharya, Moumita ; Lu, Dai-Yin ; Kudchadkar, Shibani M. ; Greenland, Gabriela Villarreal ; Lingamaneni, Prasanth ; Corona-Villalobos, Celia P. ; Guan, Yufan ; Marine, Joseph E. ; Olgin, Jeffrey E. ; Zimmerman, Stefan ; Abraham, Theodore P. ; Shatkay, Hagit ; Abraham, Maria Roselle</creator><creatorcontrib>Bhattacharya, Moumita ; Lu, Dai-Yin ; Kudchadkar, Shibani M. ; Greenland, Gabriela Villarreal ; Lingamaneni, Prasanth ; Corona-Villalobos, Celia P. ; Guan, Yufan ; Marine, Joseph E. ; Olgin, Jeffrey E. ; Zimmerman, Stefan ; Abraham, Theodore P. ; Shatkay, Hagit ; Abraham, Maria Roselle</creatorcontrib><description>Clinical risk stratification for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HC) employs rules derived from American College of Cardiology Foundation/American Heart Association (ACCF/AHA) guidelines or the HCM Risk-SCD model (C-index ∼0.69), which utilize a few clinical variables. We assessed whether data-driven machine learning methods that consider a wider range of variables can effectively identify HC patients with ventricular arrhythmias (VAr) that lead to SCD. We scanned the electronic health records of 711 HC patients for sustained ventricular tachycardia or ventricular fibrillation. Patients with ventricular tachycardia or ventricular fibrillation (n = 61) were tagged as VAr cases and the remaining (n = 650) as non-VAr. The 2-sample ttest and information gain criterion were used to identify the most informative clinical variables that distinguish VAr from non-VAr; patient records were reduced to include only these variables. Data imbalance stemming from low number of VAr cases was addressed by applying a combination of over- and undersampling strategies. We trained and tested multiple classifiers under this sampling approach, showing effective classification. We evaluated 93 clinical variables, of which 22 proved predictive of VAr. The ensemble of logistic regression and naïve Bayes classifiers, trained based on these 22 variables and corrected for data imbalance, was most effective in separating VAr from non-VAr cases (sensitivity = 0.73, specificity = 0.76, C-index = 0.83). Our method (HCM-VAr-Risk Model) identified 12 new predictors of VAr, in addition to 10 established SCD predictors. In conclusion, this is the first application of machine learning for identifying HC patients with VAr, using clinical attributes. Our model demonstrates good performance (C-index) compared with currently employed SCD prediction algorithms, while addressing imbalance inherent in clinical data.</description><identifier>ISSN: 0002-9149</identifier><identifier>EISSN: 1879-1913</identifier><identifier>DOI: 10.1016/j.amjcard.2019.02.022</identifier><identifier>PMID: 30952382</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Arrhythmia ; Artificial intelligence ; Bayesian analysis ; Cardiac arrhythmia ; Cardiology ; Cardiomyopathy ; Cardiomyopathy, Hypertrophic ; Classifiers ; Datasets ; Echocardiography, Stress ; Electrocardiography ; Electronic Health Records ; Electronic medical records ; Family medical history ; Female ; Fibrillation ; Heart ; Humans ; Identification methods ; Learning algorithms ; Machine Learning ; Magnetic Resonance Imaging, Cine - methods ; Male ; Mathematical models ; Middle Aged ; NMR ; Nuclear magnetic resonance ; Patients ; Predictions ; Predictive Value of Tests ; Prognosis ; Questioning ; Registries ; Reproducibility of Results ; Retrospective Studies ; Risk ; Risk Assessment - methods ; Risk Factors ; Tachycardia ; Tachycardia, Ventricular - diagnosis ; Tachycardia, Ventricular - etiology ; Ventricle ; Ventricular fibrillation</subject><ispartof>The American journal of cardiology, 2019-05, Vol.123 (10), p.1681-1689</ispartof><rights>2019 The Authors</rights><rights>Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2019. The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-82c5f5a3832704bf61c9fae099c2b646d0f9785988d2f8af3c9121e420cdd2243</citedby><cites>FETCH-LOGICAL-c440t-82c5f5a3832704bf61c9fae099c2b646d0f9785988d2f8af3c9121e420cdd2243</cites><orcidid>0000-0002-1334-7850 ; 0000-0001-8966-6906 ; 0000-0001-5035-5342 ; 0000-0002-7836-4504 ; 0000-0002-9422-6742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0002914919302279$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30952382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhattacharya, Moumita</creatorcontrib><creatorcontrib>Lu, Dai-Yin</creatorcontrib><creatorcontrib>Kudchadkar, Shibani M.</creatorcontrib><creatorcontrib>Greenland, Gabriela Villarreal</creatorcontrib><creatorcontrib>Lingamaneni, Prasanth</creatorcontrib><creatorcontrib>Corona-Villalobos, Celia P.</creatorcontrib><creatorcontrib>Guan, Yufan</creatorcontrib><creatorcontrib>Marine, Joseph E.</creatorcontrib><creatorcontrib>Olgin, Jeffrey E.</creatorcontrib><creatorcontrib>Zimmerman, Stefan</creatorcontrib><creatorcontrib>Abraham, Theodore P.</creatorcontrib><creatorcontrib>Shatkay, Hagit</creatorcontrib><creatorcontrib>Abraham, Maria Roselle</creatorcontrib><title>Identifying Ventricular Arrhythmias and Their Predictors by Applying Machine Learning Methods to Electronic Health Records in Patients With Hypertrophic Cardiomyopathy (HCM-VAr-Risk Model)</title><title>The American journal of cardiology</title><addtitle>Am J Cardiol</addtitle><description>Clinical risk stratification for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HC) employs rules derived from American College of Cardiology Foundation/American Heart Association (ACCF/AHA) guidelines or the HCM Risk-SCD model (C-index ∼0.69), which utilize a few clinical variables. We assessed whether data-driven machine learning methods that consider a wider range of variables can effectively identify HC patients with ventricular arrhythmias (VAr) that lead to SCD. We scanned the electronic health records of 711 HC patients for sustained ventricular tachycardia or ventricular fibrillation. Patients with ventricular tachycardia or ventricular fibrillation (n = 61) were tagged as VAr cases and the remaining (n = 650) as non-VAr. The 2-sample ttest and information gain criterion were used to identify the most informative clinical variables that distinguish VAr from non-VAr; patient records were reduced to include only these variables. Data imbalance stemming from low number of VAr cases was addressed by applying a combination of over- and undersampling strategies. We trained and tested multiple classifiers under this sampling approach, showing effective classification. We evaluated 93 clinical variables, of which 22 proved predictive of VAr. The ensemble of logistic regression and naïve Bayes classifiers, trained based on these 22 variables and corrected for data imbalance, was most effective in separating VAr from non-VAr cases (sensitivity = 0.73, specificity = 0.76, C-index = 0.83). Our method (HCM-VAr-Risk Model) identified 12 new predictors of VAr, in addition to 10 established SCD predictors. In conclusion, this is the first application of machine learning for identifying HC patients with VAr, using clinical attributes. Our model demonstrates good performance (C-index) compared with currently employed SCD prediction algorithms, while addressing imbalance inherent in clinical data.</description><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Artificial intelligence</subject><subject>Bayesian analysis</subject><subject>Cardiac arrhythmia</subject><subject>Cardiology</subject><subject>Cardiomyopathy</subject><subject>Cardiomyopathy, Hypertrophic</subject><subject>Classifiers</subject><subject>Datasets</subject><subject>Echocardiography, Stress</subject><subject>Electrocardiography</subject><subject>Electronic Health Records</subject><subject>Electronic medical records</subject><subject>Family medical history</subject><subject>Female</subject><subject>Fibrillation</subject><subject>Heart</subject><subject>Humans</subject><subject>Identification methods</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging, Cine - methods</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Middle Aged</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Patients</subject><subject>Predictions</subject><subject>Predictive Value of Tests</subject><subject>Prognosis</subject><subject>Questioning</subject><subject>Registries</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><subject>Risk</subject><subject>Risk Assessment - methods</subject><subject>Risk Factors</subject><subject>Tachycardia</subject><subject>Tachycardia, Ventricular - diagnosis</subject><subject>Tachycardia, Ventricular - etiology</subject><subject>Ventricle</subject><subject>Ventricular fibrillation</subject><issn>0002-9149</issn><issn>1879-1913</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1v1DAQhiMEotvCTwBZ4lIOWWznY-MTWq0KW2lXVFUpR8trT4hDEgfbQcp_649j2l04cEEayR_zvDP2vEnyhtElo6z80C5V32rlzZJTJpaUY_BnyYJVK5EywbLnyYJSylPBcnGWnIfQ4pGxonyZnGVUFDyr-CJ5uDYwRFvPdvhO7nHrrZ465cna-2aOTW9VIGow5K4B68mNB2N1dD6Qw0zW49g9CfdKN3YAsgPlh6cLiI0zgURHrjrQ0bvBarIF1cWG3IJ2HpN2IDcqWmwayDeLie08gkd2bBDe4N-s62c3qtjM5HK72af3a5_e2vCD7J2B7v2r5EWtugCvT-tF8vXT1d1mm-6-fL7erHepznMa04rroi5UVmV8RfNDXTItagVUCM0PZV4aWotVVYiqMryuVJ1pwTiDnFNtDOd5dpFcHuuO3v2cIETZ26Ch69QAbgqSc5qXWEJkiL77B23d5Ad8HVLoRMHyTCBVHCntXQgeajl62ys_S0blo72ylSd75aO9knIMjrq3p-rToQfzV_XHTwQ-HgHAcfyy4GXQOGCNrnm0QRpn_9PiNxNluwM</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Bhattacharya, Moumita</creator><creator>Lu, Dai-Yin</creator><creator>Kudchadkar, Shibani M.</creator><creator>Greenland, Gabriela Villarreal</creator><creator>Lingamaneni, Prasanth</creator><creator>Corona-Villalobos, Celia P.</creator><creator>Guan, Yufan</creator><creator>Marine, Joseph E.</creator><creator>Olgin, Jeffrey E.</creator><creator>Zimmerman, Stefan</creator><creator>Abraham, Theodore P.</creator><creator>Shatkay, Hagit</creator><creator>Abraham, Maria Roselle</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1334-7850</orcidid><orcidid>https://orcid.org/0000-0001-8966-6906</orcidid><orcidid>https://orcid.org/0000-0001-5035-5342</orcidid><orcidid>https://orcid.org/0000-0002-7836-4504</orcidid><orcidid>https://orcid.org/0000-0002-9422-6742</orcidid></search><sort><creationdate>20190515</creationdate><title>Identifying Ventricular Arrhythmias and Their Predictors by Applying Machine Learning Methods to Electronic Health Records in Patients With Hypertrophic Cardiomyopathy (HCM-VAr-Risk Model)</title><author>Bhattacharya, Moumita ; Lu, Dai-Yin ; Kudchadkar, Shibani M. ; Greenland, Gabriela Villarreal ; Lingamaneni, Prasanth ; Corona-Villalobos, Celia P. ; Guan, Yufan ; Marine, Joseph E. ; Olgin, Jeffrey E. ; Zimmerman, Stefan ; Abraham, Theodore P. ; Shatkay, Hagit ; Abraham, Maria Roselle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-82c5f5a3832704bf61c9fae099c2b646d0f9785988d2f8af3c9121e420cdd2243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Artificial intelligence</topic><topic>Bayesian analysis</topic><topic>Cardiac arrhythmia</topic><topic>Cardiology</topic><topic>Cardiomyopathy</topic><topic>Cardiomyopathy, Hypertrophic</topic><topic>Classifiers</topic><topic>Datasets</topic><topic>Echocardiography, Stress</topic><topic>Electrocardiography</topic><topic>Electronic Health Records</topic><topic>Electronic medical records</topic><topic>Family medical history</topic><topic>Female</topic><topic>Fibrillation</topic><topic>Heart</topic><topic>Humans</topic><topic>Identification methods</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging, Cine - methods</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Middle Aged</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Patients</topic><topic>Predictions</topic><topic>Predictive Value of Tests</topic><topic>Prognosis</topic><topic>Questioning</topic><topic>Registries</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><topic>Risk</topic><topic>Risk Assessment - methods</topic><topic>Risk Factors</topic><topic>Tachycardia</topic><topic>Tachycardia, Ventricular - diagnosis</topic><topic>Tachycardia, Ventricular - etiology</topic><topic>Ventricle</topic><topic>Ventricular fibrillation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhattacharya, Moumita</creatorcontrib><creatorcontrib>Lu, Dai-Yin</creatorcontrib><creatorcontrib>Kudchadkar, Shibani M.</creatorcontrib><creatorcontrib>Greenland, Gabriela Villarreal</creatorcontrib><creatorcontrib>Lingamaneni, Prasanth</creatorcontrib><creatorcontrib>Corona-Villalobos, Celia P.</creatorcontrib><creatorcontrib>Guan, Yufan</creatorcontrib><creatorcontrib>Marine, Joseph E.</creatorcontrib><creatorcontrib>Olgin, Jeffrey E.</creatorcontrib><creatorcontrib>Zimmerman, Stefan</creatorcontrib><creatorcontrib>Abraham, Theodore P.</creatorcontrib><creatorcontrib>Shatkay, Hagit</creatorcontrib><creatorcontrib>Abraham, Maria Roselle</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>The American journal of cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhattacharya, Moumita</au><au>Lu, Dai-Yin</au><au>Kudchadkar, Shibani M.</au><au>Greenland, Gabriela Villarreal</au><au>Lingamaneni, Prasanth</au><au>Corona-Villalobos, Celia P.</au><au>Guan, Yufan</au><au>Marine, Joseph E.</au><au>Olgin, Jeffrey E.</au><au>Zimmerman, Stefan</au><au>Abraham, Theodore P.</au><au>Shatkay, Hagit</au><au>Abraham, Maria Roselle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Ventricular Arrhythmias and Their Predictors by Applying Machine Learning Methods to Electronic Health Records in Patients With Hypertrophic Cardiomyopathy (HCM-VAr-Risk Model)</atitle><jtitle>The American journal of cardiology</jtitle><addtitle>Am J Cardiol</addtitle><date>2019-05-15</date><risdate>2019</risdate><volume>123</volume><issue>10</issue><spage>1681</spage><epage>1689</epage><pages>1681-1689</pages><issn>0002-9149</issn><eissn>1879-1913</eissn><abstract>Clinical risk stratification for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HC) employs rules derived from American College of Cardiology Foundation/American Heart Association (ACCF/AHA) guidelines or the HCM Risk-SCD model (C-index ∼0.69), which utilize a few clinical variables. We assessed whether data-driven machine learning methods that consider a wider range of variables can effectively identify HC patients with ventricular arrhythmias (VAr) that lead to SCD. We scanned the electronic health records of 711 HC patients for sustained ventricular tachycardia or ventricular fibrillation. Patients with ventricular tachycardia or ventricular fibrillation (n = 61) were tagged as VAr cases and the remaining (n = 650) as non-VAr. The 2-sample ttest and information gain criterion were used to identify the most informative clinical variables that distinguish VAr from non-VAr; patient records were reduced to include only these variables. Data imbalance stemming from low number of VAr cases was addressed by applying a combination of over- and undersampling strategies. We trained and tested multiple classifiers under this sampling approach, showing effective classification. We evaluated 93 clinical variables, of which 22 proved predictive of VAr. The ensemble of logistic regression and naïve Bayes classifiers, trained based on these 22 variables and corrected for data imbalance, was most effective in separating VAr from non-VAr cases (sensitivity = 0.73, specificity = 0.76, C-index = 0.83). Our method (HCM-VAr-Risk Model) identified 12 new predictors of VAr, in addition to 10 established SCD predictors. In conclusion, this is the first application of machine learning for identifying HC patients with VAr, using clinical attributes. Our model demonstrates good performance (C-index) compared with currently employed SCD prediction algorithms, while addressing imbalance inherent in clinical data.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30952382</pmid><doi>10.1016/j.amjcard.2019.02.022</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1334-7850</orcidid><orcidid>https://orcid.org/0000-0001-8966-6906</orcidid><orcidid>https://orcid.org/0000-0001-5035-5342</orcidid><orcidid>https://orcid.org/0000-0002-7836-4504</orcidid><orcidid>https://orcid.org/0000-0002-9422-6742</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9149
ispartof The American journal of cardiology, 2019-05, Vol.123 (10), p.1681-1689
issn 0002-9149
1879-1913
language eng
recordid cdi_proquest_miscellaneous_2204697893
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Arrhythmia
Artificial intelligence
Bayesian analysis
Cardiac arrhythmia
Cardiology
Cardiomyopathy
Cardiomyopathy, Hypertrophic
Classifiers
Datasets
Echocardiography, Stress
Electrocardiography
Electronic Health Records
Electronic medical records
Family medical history
Female
Fibrillation
Heart
Humans
Identification methods
Learning algorithms
Machine Learning
Magnetic Resonance Imaging, Cine - methods
Male
Mathematical models
Middle Aged
NMR
Nuclear magnetic resonance
Patients
Predictions
Predictive Value of Tests
Prognosis
Questioning
Registries
Reproducibility of Results
Retrospective Studies
Risk
Risk Assessment - methods
Risk Factors
Tachycardia
Tachycardia, Ventricular - diagnosis
Tachycardia, Ventricular - etiology
Ventricle
Ventricular fibrillation
title Identifying Ventricular Arrhythmias and Their Predictors by Applying Machine Learning Methods to Electronic Health Records in Patients With Hypertrophic Cardiomyopathy (HCM-VAr-Risk Model)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Ventricular%20Arrhythmias%20and%20Their%20Predictors%20by%20Applying%20Machine%20Learning%20Methods%20to%20Electronic%20Health%20Records%20in%20Patients%20With%20Hypertrophic%20Cardiomyopathy%20(HCM-VAr-Risk%20Model)&rft.jtitle=The%20American%20journal%20of%20cardiology&rft.au=Bhattacharya,%20Moumita&rft.date=2019-05-15&rft.volume=123&rft.issue=10&rft.spage=1681&rft.epage=1689&rft.pages=1681-1689&rft.issn=0002-9149&rft.eissn=1879-1913&rft_id=info:doi/10.1016/j.amjcard.2019.02.022&rft_dat=%3Cproquest_cross%3E2214951439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2214951439&rft_id=info:pmid/30952382&rft_els_id=S0002914919302279&rfr_iscdi=true