Identifying Ventricular Arrhythmias and Their Predictors by Applying Machine Learning Methods to Electronic Health Records in Patients With Hypertrophic Cardiomyopathy (HCM-VAr-Risk Model)
Clinical risk stratification for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HC) employs rules derived from American College of Cardiology Foundation/American Heart Association (ACCF/AHA) guidelines or the HCM Risk-SCD model (C-index ∼0.69), which utilize a few clinical variables. We...
Gespeichert in:
Veröffentlicht in: | The American journal of cardiology 2019-05, Vol.123 (10), p.1681-1689 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1689 |
---|---|
container_issue | 10 |
container_start_page | 1681 |
container_title | The American journal of cardiology |
container_volume | 123 |
creator | Bhattacharya, Moumita Lu, Dai-Yin Kudchadkar, Shibani M. Greenland, Gabriela Villarreal Lingamaneni, Prasanth Corona-Villalobos, Celia P. Guan, Yufan Marine, Joseph E. Olgin, Jeffrey E. Zimmerman, Stefan Abraham, Theodore P. Shatkay, Hagit Abraham, Maria Roselle |
description | Clinical risk stratification for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HC) employs rules derived from American College of Cardiology Foundation/American Heart Association (ACCF/AHA) guidelines or the HCM Risk-SCD model (C-index ∼0.69), which utilize a few clinical variables. We assessed whether data-driven machine learning methods that consider a wider range of variables can effectively identify HC patients with ventricular arrhythmias (VAr) that lead to SCD. We scanned the electronic health records of 711 HC patients for sustained ventricular tachycardia or ventricular fibrillation. Patients with ventricular tachycardia or ventricular fibrillation (n = 61) were tagged as VAr cases and the remaining (n = 650) as non-VAr. The 2-sample ttest and information gain criterion were used to identify the most informative clinical variables that distinguish VAr from non-VAr; patient records were reduced to include only these variables. Data imbalance stemming from low number of VAr cases was addressed by applying a combination of over- and undersampling strategies. We trained and tested multiple classifiers under this sampling approach, showing effective classification. We evaluated 93 clinical variables, of which 22 proved predictive of VAr. The ensemble of logistic regression and naïve Bayes classifiers, trained based on these 22 variables and corrected for data imbalance, was most effective in separating VAr from non-VAr cases (sensitivity = 0.73, specificity = 0.76, C-index = 0.83). Our method (HCM-VAr-Risk Model) identified 12 new predictors of VAr, in addition to 10 established SCD predictors. In conclusion, this is the first application of machine learning for identifying HC patients with VAr, using clinical attributes. Our model demonstrates good performance (C-index) compared with currently employed SCD prediction algorithms, while addressing imbalance inherent in clinical data. |
doi_str_mv | 10.1016/j.amjcard.2019.02.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2204697893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002914919302279</els_id><sourcerecordid>2214951439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-82c5f5a3832704bf61c9fae099c2b646d0f9785988d2f8af3c9121e420cdd2243</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEotvCTwBZ4lIOWWznY-MTWq0KW2lXVFUpR8trT4hDEgfbQcp_649j2l04cEEayR_zvDP2vEnyhtElo6z80C5V32rlzZJTJpaUY_BnyYJVK5EywbLnyYJSylPBcnGWnIfQ4pGxonyZnGVUFDyr-CJ5uDYwRFvPdvhO7nHrrZ465cna-2aOTW9VIGow5K4B68mNB2N1dD6Qw0zW49g9CfdKN3YAsgPlh6cLiI0zgURHrjrQ0bvBarIF1cWG3IJ2HpN2IDcqWmwayDeLie08gkd2bBDe4N-s62c3qtjM5HK72af3a5_e2vCD7J2B7v2r5EWtugCvT-tF8vXT1d1mm-6-fL7erHepznMa04rroi5UVmV8RfNDXTItagVUCM0PZV4aWotVVYiqMryuVJ1pwTiDnFNtDOd5dpFcHuuO3v2cIETZ26Ch69QAbgqSc5qXWEJkiL77B23d5Ad8HVLoRMHyTCBVHCntXQgeajl62ys_S0blo72ylSd75aO9knIMjrq3p-rToQfzV_XHTwQ-HgHAcfyy4GXQOGCNrnm0QRpn_9PiNxNluwM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2214951439</pqid></control><display><type>article</type><title>Identifying Ventricular Arrhythmias and Their Predictors by Applying Machine Learning Methods to Electronic Health Records in Patients With Hypertrophic Cardiomyopathy (HCM-VAr-Risk Model)</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bhattacharya, Moumita ; Lu, Dai-Yin ; Kudchadkar, Shibani M. ; Greenland, Gabriela Villarreal ; Lingamaneni, Prasanth ; Corona-Villalobos, Celia P. ; Guan, Yufan ; Marine, Joseph E. ; Olgin, Jeffrey E. ; Zimmerman, Stefan ; Abraham, Theodore P. ; Shatkay, Hagit ; Abraham, Maria Roselle</creator><creatorcontrib>Bhattacharya, Moumita ; Lu, Dai-Yin ; Kudchadkar, Shibani M. ; Greenland, Gabriela Villarreal ; Lingamaneni, Prasanth ; Corona-Villalobos, Celia P. ; Guan, Yufan ; Marine, Joseph E. ; Olgin, Jeffrey E. ; Zimmerman, Stefan ; Abraham, Theodore P. ; Shatkay, Hagit ; Abraham, Maria Roselle</creatorcontrib><description>Clinical risk stratification for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HC) employs rules derived from American College of Cardiology Foundation/American Heart Association (ACCF/AHA) guidelines or the HCM Risk-SCD model (C-index ∼0.69), which utilize a few clinical variables. We assessed whether data-driven machine learning methods that consider a wider range of variables can effectively identify HC patients with ventricular arrhythmias (VAr) that lead to SCD. We scanned the electronic health records of 711 HC patients for sustained ventricular tachycardia or ventricular fibrillation. Patients with ventricular tachycardia or ventricular fibrillation (n = 61) were tagged as VAr cases and the remaining (n = 650) as non-VAr. The 2-sample ttest and information gain criterion were used to identify the most informative clinical variables that distinguish VAr from non-VAr; patient records were reduced to include only these variables. Data imbalance stemming from low number of VAr cases was addressed by applying a combination of over- and undersampling strategies. We trained and tested multiple classifiers under this sampling approach, showing effective classification. We evaluated 93 clinical variables, of which 22 proved predictive of VAr. The ensemble of logistic regression and naïve Bayes classifiers, trained based on these 22 variables and corrected for data imbalance, was most effective in separating VAr from non-VAr cases (sensitivity = 0.73, specificity = 0.76, C-index = 0.83). Our method (HCM-VAr-Risk Model) identified 12 new predictors of VAr, in addition to 10 established SCD predictors. In conclusion, this is the first application of machine learning for identifying HC patients with VAr, using clinical attributes. Our model demonstrates good performance (C-index) compared with currently employed SCD prediction algorithms, while addressing imbalance inherent in clinical data.</description><identifier>ISSN: 0002-9149</identifier><identifier>EISSN: 1879-1913</identifier><identifier>DOI: 10.1016/j.amjcard.2019.02.022</identifier><identifier>PMID: 30952382</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Arrhythmia ; Artificial intelligence ; Bayesian analysis ; Cardiac arrhythmia ; Cardiology ; Cardiomyopathy ; Cardiomyopathy, Hypertrophic ; Classifiers ; Datasets ; Echocardiography, Stress ; Electrocardiography ; Electronic Health Records ; Electronic medical records ; Family medical history ; Female ; Fibrillation ; Heart ; Humans ; Identification methods ; Learning algorithms ; Machine Learning ; Magnetic Resonance Imaging, Cine - methods ; Male ; Mathematical models ; Middle Aged ; NMR ; Nuclear magnetic resonance ; Patients ; Predictions ; Predictive Value of Tests ; Prognosis ; Questioning ; Registries ; Reproducibility of Results ; Retrospective Studies ; Risk ; Risk Assessment - methods ; Risk Factors ; Tachycardia ; Tachycardia, Ventricular - diagnosis ; Tachycardia, Ventricular - etiology ; Ventricle ; Ventricular fibrillation</subject><ispartof>The American journal of cardiology, 2019-05, Vol.123 (10), p.1681-1689</ispartof><rights>2019 The Authors</rights><rights>Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2019. The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-82c5f5a3832704bf61c9fae099c2b646d0f9785988d2f8af3c9121e420cdd2243</citedby><cites>FETCH-LOGICAL-c440t-82c5f5a3832704bf61c9fae099c2b646d0f9785988d2f8af3c9121e420cdd2243</cites><orcidid>0000-0002-1334-7850 ; 0000-0001-8966-6906 ; 0000-0001-5035-5342 ; 0000-0002-7836-4504 ; 0000-0002-9422-6742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0002914919302279$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30952382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhattacharya, Moumita</creatorcontrib><creatorcontrib>Lu, Dai-Yin</creatorcontrib><creatorcontrib>Kudchadkar, Shibani M.</creatorcontrib><creatorcontrib>Greenland, Gabriela Villarreal</creatorcontrib><creatorcontrib>Lingamaneni, Prasanth</creatorcontrib><creatorcontrib>Corona-Villalobos, Celia P.</creatorcontrib><creatorcontrib>Guan, Yufan</creatorcontrib><creatorcontrib>Marine, Joseph E.</creatorcontrib><creatorcontrib>Olgin, Jeffrey E.</creatorcontrib><creatorcontrib>Zimmerman, Stefan</creatorcontrib><creatorcontrib>Abraham, Theodore P.</creatorcontrib><creatorcontrib>Shatkay, Hagit</creatorcontrib><creatorcontrib>Abraham, Maria Roselle</creatorcontrib><title>Identifying Ventricular Arrhythmias and Their Predictors by Applying Machine Learning Methods to Electronic Health Records in Patients With Hypertrophic Cardiomyopathy (HCM-VAr-Risk Model)</title><title>The American journal of cardiology</title><addtitle>Am J Cardiol</addtitle><description>Clinical risk stratification for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HC) employs rules derived from American College of Cardiology Foundation/American Heart Association (ACCF/AHA) guidelines or the HCM Risk-SCD model (C-index ∼0.69), which utilize a few clinical variables. We assessed whether data-driven machine learning methods that consider a wider range of variables can effectively identify HC patients with ventricular arrhythmias (VAr) that lead to SCD. We scanned the electronic health records of 711 HC patients for sustained ventricular tachycardia or ventricular fibrillation. Patients with ventricular tachycardia or ventricular fibrillation (n = 61) were tagged as VAr cases and the remaining (n = 650) as non-VAr. The 2-sample ttest and information gain criterion were used to identify the most informative clinical variables that distinguish VAr from non-VAr; patient records were reduced to include only these variables. Data imbalance stemming from low number of VAr cases was addressed by applying a combination of over- and undersampling strategies. We trained and tested multiple classifiers under this sampling approach, showing effective classification. We evaluated 93 clinical variables, of which 22 proved predictive of VAr. The ensemble of logistic regression and naïve Bayes classifiers, trained based on these 22 variables and corrected for data imbalance, was most effective in separating VAr from non-VAr cases (sensitivity = 0.73, specificity = 0.76, C-index = 0.83). Our method (HCM-VAr-Risk Model) identified 12 new predictors of VAr, in addition to 10 established SCD predictors. In conclusion, this is the first application of machine learning for identifying HC patients with VAr, using clinical attributes. Our model demonstrates good performance (C-index) compared with currently employed SCD prediction algorithms, while addressing imbalance inherent in clinical data.</description><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Artificial intelligence</subject><subject>Bayesian analysis</subject><subject>Cardiac arrhythmia</subject><subject>Cardiology</subject><subject>Cardiomyopathy</subject><subject>Cardiomyopathy, Hypertrophic</subject><subject>Classifiers</subject><subject>Datasets</subject><subject>Echocardiography, Stress</subject><subject>Electrocardiography</subject><subject>Electronic Health Records</subject><subject>Electronic medical records</subject><subject>Family medical history</subject><subject>Female</subject><subject>Fibrillation</subject><subject>Heart</subject><subject>Humans</subject><subject>Identification methods</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging, Cine - methods</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Middle Aged</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Patients</subject><subject>Predictions</subject><subject>Predictive Value of Tests</subject><subject>Prognosis</subject><subject>Questioning</subject><subject>Registries</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><subject>Risk</subject><subject>Risk Assessment - methods</subject><subject>Risk Factors</subject><subject>Tachycardia</subject><subject>Tachycardia, Ventricular - diagnosis</subject><subject>Tachycardia, Ventricular - etiology</subject><subject>Ventricle</subject><subject>Ventricular fibrillation</subject><issn>0002-9149</issn><issn>1879-1913</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1v1DAQhiMEotvCTwBZ4lIOWWznY-MTWq0KW2lXVFUpR8trT4hDEgfbQcp_649j2l04cEEayR_zvDP2vEnyhtElo6z80C5V32rlzZJTJpaUY_BnyYJVK5EywbLnyYJSylPBcnGWnIfQ4pGxonyZnGVUFDyr-CJ5uDYwRFvPdvhO7nHrrZ465cna-2aOTW9VIGow5K4B68mNB2N1dD6Qw0zW49g9CfdKN3YAsgPlh6cLiI0zgURHrjrQ0bvBarIF1cWG3IJ2HpN2IDcqWmwayDeLie08gkd2bBDe4N-s62c3qtjM5HK72af3a5_e2vCD7J2B7v2r5EWtugCvT-tF8vXT1d1mm-6-fL7erHepznMa04rroi5UVmV8RfNDXTItagVUCM0PZV4aWotVVYiqMryuVJ1pwTiDnFNtDOd5dpFcHuuO3v2cIETZ26Ch69QAbgqSc5qXWEJkiL77B23d5Ad8HVLoRMHyTCBVHCntXQgeajl62ys_S0blo72ylSd75aO9knIMjrq3p-rToQfzV_XHTwQ-HgHAcfyy4GXQOGCNrnm0QRpn_9PiNxNluwM</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Bhattacharya, Moumita</creator><creator>Lu, Dai-Yin</creator><creator>Kudchadkar, Shibani M.</creator><creator>Greenland, Gabriela Villarreal</creator><creator>Lingamaneni, Prasanth</creator><creator>Corona-Villalobos, Celia P.</creator><creator>Guan, Yufan</creator><creator>Marine, Joseph E.</creator><creator>Olgin, Jeffrey E.</creator><creator>Zimmerman, Stefan</creator><creator>Abraham, Theodore P.</creator><creator>Shatkay, Hagit</creator><creator>Abraham, Maria Roselle</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1334-7850</orcidid><orcidid>https://orcid.org/0000-0001-8966-6906</orcidid><orcidid>https://orcid.org/0000-0001-5035-5342</orcidid><orcidid>https://orcid.org/0000-0002-7836-4504</orcidid><orcidid>https://orcid.org/0000-0002-9422-6742</orcidid></search><sort><creationdate>20190515</creationdate><title>Identifying Ventricular Arrhythmias and Their Predictors by Applying Machine Learning Methods to Electronic Health Records in Patients With Hypertrophic Cardiomyopathy (HCM-VAr-Risk Model)</title><author>Bhattacharya, Moumita ; Lu, Dai-Yin ; Kudchadkar, Shibani M. ; Greenland, Gabriela Villarreal ; Lingamaneni, Prasanth ; Corona-Villalobos, Celia P. ; Guan, Yufan ; Marine, Joseph E. ; Olgin, Jeffrey E. ; Zimmerman, Stefan ; Abraham, Theodore P. ; Shatkay, Hagit ; Abraham, Maria Roselle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-82c5f5a3832704bf61c9fae099c2b646d0f9785988d2f8af3c9121e420cdd2243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Artificial intelligence</topic><topic>Bayesian analysis</topic><topic>Cardiac arrhythmia</topic><topic>Cardiology</topic><topic>Cardiomyopathy</topic><topic>Cardiomyopathy, Hypertrophic</topic><topic>Classifiers</topic><topic>Datasets</topic><topic>Echocardiography, Stress</topic><topic>Electrocardiography</topic><topic>Electronic Health Records</topic><topic>Electronic medical records</topic><topic>Family medical history</topic><topic>Female</topic><topic>Fibrillation</topic><topic>Heart</topic><topic>Humans</topic><topic>Identification methods</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging, Cine - methods</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Middle Aged</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Patients</topic><topic>Predictions</topic><topic>Predictive Value of Tests</topic><topic>Prognosis</topic><topic>Questioning</topic><topic>Registries</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><topic>Risk</topic><topic>Risk Assessment - methods</topic><topic>Risk Factors</topic><topic>Tachycardia</topic><topic>Tachycardia, Ventricular - diagnosis</topic><topic>Tachycardia, Ventricular - etiology</topic><topic>Ventricle</topic><topic>Ventricular fibrillation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhattacharya, Moumita</creatorcontrib><creatorcontrib>Lu, Dai-Yin</creatorcontrib><creatorcontrib>Kudchadkar, Shibani M.</creatorcontrib><creatorcontrib>Greenland, Gabriela Villarreal</creatorcontrib><creatorcontrib>Lingamaneni, Prasanth</creatorcontrib><creatorcontrib>Corona-Villalobos, Celia P.</creatorcontrib><creatorcontrib>Guan, Yufan</creatorcontrib><creatorcontrib>Marine, Joseph E.</creatorcontrib><creatorcontrib>Olgin, Jeffrey E.</creatorcontrib><creatorcontrib>Zimmerman, Stefan</creatorcontrib><creatorcontrib>Abraham, Theodore P.</creatorcontrib><creatorcontrib>Shatkay, Hagit</creatorcontrib><creatorcontrib>Abraham, Maria Roselle</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>The American journal of cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhattacharya, Moumita</au><au>Lu, Dai-Yin</au><au>Kudchadkar, Shibani M.</au><au>Greenland, Gabriela Villarreal</au><au>Lingamaneni, Prasanth</au><au>Corona-Villalobos, Celia P.</au><au>Guan, Yufan</au><au>Marine, Joseph E.</au><au>Olgin, Jeffrey E.</au><au>Zimmerman, Stefan</au><au>Abraham, Theodore P.</au><au>Shatkay, Hagit</au><au>Abraham, Maria Roselle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Ventricular Arrhythmias and Their Predictors by Applying Machine Learning Methods to Electronic Health Records in Patients With Hypertrophic Cardiomyopathy (HCM-VAr-Risk Model)</atitle><jtitle>The American journal of cardiology</jtitle><addtitle>Am J Cardiol</addtitle><date>2019-05-15</date><risdate>2019</risdate><volume>123</volume><issue>10</issue><spage>1681</spage><epage>1689</epage><pages>1681-1689</pages><issn>0002-9149</issn><eissn>1879-1913</eissn><abstract>Clinical risk stratification for sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HC) employs rules derived from American College of Cardiology Foundation/American Heart Association (ACCF/AHA) guidelines or the HCM Risk-SCD model (C-index ∼0.69), which utilize a few clinical variables. We assessed whether data-driven machine learning methods that consider a wider range of variables can effectively identify HC patients with ventricular arrhythmias (VAr) that lead to SCD. We scanned the electronic health records of 711 HC patients for sustained ventricular tachycardia or ventricular fibrillation. Patients with ventricular tachycardia or ventricular fibrillation (n = 61) were tagged as VAr cases and the remaining (n = 650) as non-VAr. The 2-sample ttest and information gain criterion were used to identify the most informative clinical variables that distinguish VAr from non-VAr; patient records were reduced to include only these variables. Data imbalance stemming from low number of VAr cases was addressed by applying a combination of over- and undersampling strategies. We trained and tested multiple classifiers under this sampling approach, showing effective classification. We evaluated 93 clinical variables, of which 22 proved predictive of VAr. The ensemble of logistic regression and naïve Bayes classifiers, trained based on these 22 variables and corrected for data imbalance, was most effective in separating VAr from non-VAr cases (sensitivity = 0.73, specificity = 0.76, C-index = 0.83). Our method (HCM-VAr-Risk Model) identified 12 new predictors of VAr, in addition to 10 established SCD predictors. In conclusion, this is the first application of machine learning for identifying HC patients with VAr, using clinical attributes. Our model demonstrates good performance (C-index) compared with currently employed SCD prediction algorithms, while addressing imbalance inherent in clinical data.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30952382</pmid><doi>10.1016/j.amjcard.2019.02.022</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1334-7850</orcidid><orcidid>https://orcid.org/0000-0001-8966-6906</orcidid><orcidid>https://orcid.org/0000-0001-5035-5342</orcidid><orcidid>https://orcid.org/0000-0002-7836-4504</orcidid><orcidid>https://orcid.org/0000-0002-9422-6742</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9149 |
ispartof | The American journal of cardiology, 2019-05, Vol.123 (10), p.1681-1689 |
issn | 0002-9149 1879-1913 |
language | eng |
recordid | cdi_proquest_miscellaneous_2204697893 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Arrhythmia Artificial intelligence Bayesian analysis Cardiac arrhythmia Cardiology Cardiomyopathy Cardiomyopathy, Hypertrophic Classifiers Datasets Echocardiography, Stress Electrocardiography Electronic Health Records Electronic medical records Family medical history Female Fibrillation Heart Humans Identification methods Learning algorithms Machine Learning Magnetic Resonance Imaging, Cine - methods Male Mathematical models Middle Aged NMR Nuclear magnetic resonance Patients Predictions Predictive Value of Tests Prognosis Questioning Registries Reproducibility of Results Retrospective Studies Risk Risk Assessment - methods Risk Factors Tachycardia Tachycardia, Ventricular - diagnosis Tachycardia, Ventricular - etiology Ventricle Ventricular fibrillation |
title | Identifying Ventricular Arrhythmias and Their Predictors by Applying Machine Learning Methods to Electronic Health Records in Patients With Hypertrophic Cardiomyopathy (HCM-VAr-Risk Model) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Ventricular%20Arrhythmias%20and%20Their%20Predictors%20by%20Applying%20Machine%20Learning%20Methods%20to%20Electronic%20Health%20Records%20in%20Patients%20With%20Hypertrophic%20Cardiomyopathy%20(HCM-VAr-Risk%20Model)&rft.jtitle=The%20American%20journal%20of%20cardiology&rft.au=Bhattacharya,%20Moumita&rft.date=2019-05-15&rft.volume=123&rft.issue=10&rft.spage=1681&rft.epage=1689&rft.pages=1681-1689&rft.issn=0002-9149&rft.eissn=1879-1913&rft_id=info:doi/10.1016/j.amjcard.2019.02.022&rft_dat=%3Cproquest_cross%3E2214951439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2214951439&rft_id=info:pmid/30952382&rft_els_id=S0002914919302279&rfr_iscdi=true |