Coherent Excitation of Heterosymmetric Spin Waves with Ultrashort Wavelengths

In the emerging field of magnonics, spin waves are foreseen as signal carriers for future spintronic information processing and communication devices, owing to both the very low power losses and a high device miniaturization potential predicted for short-wavelength spin waves. Yet, the efficient exc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-03, Vol.122 (11), p.117202-117202, Article 117202
Hauptverfasser: Dieterle, G, Förster, J, Stoll, H, Semisalova, A S, Finizio, S, Gangwar, A, Weigand, M, Noske, M, Fähnle, M, Bykova, I, Gräfe, J, Bozhko, D A, Musiienko-Shmarova, H Yu, Tiberkevich, V, Slavin, A N, Back, C H, Raabe, J, Schütz, G, Wintz, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117202
container_issue 11
container_start_page 117202
container_title Physical review letters
container_volume 122
creator Dieterle, G
Förster, J
Stoll, H
Semisalova, A S
Finizio, S
Gangwar, A
Weigand, M
Noske, M
Fähnle, M
Bykova, I
Gräfe, J
Bozhko, D A
Musiienko-Shmarova, H Yu
Tiberkevich, V
Slavin, A N
Back, C H
Raabe, J
Schütz, G
Wintz, S
description In the emerging field of magnonics, spin waves are foreseen as signal carriers for future spintronic information processing and communication devices, owing to both the very low power losses and a high device miniaturization potential predicted for short-wavelength spin waves. Yet, the efficient excitation and controlled propagation of nanoscale spin waves remains a severe challenge. Here, we report the observation of high-amplitude, ultrashort dipole-exchange spin waves (down to 80 nm wavelength at 10 GHz frequency) in a ferromagnetic single layer system, coherently excited by the driven dynamics of a spin vortex core. We used time-resolved x-ray microscopy to directly image such propagating spin waves and their excitation over a wide range of frequencies. By further analysis, we found that these waves exhibit a heterosymmetric mode profile, involving regions with anti-Larmor precession sense and purely linear magnetic oscillation. In particular, this mode profile consists of dynamic vortices with laterally alternating helicity, leading to a partial magnetic flux closure over the film thickness, which is explained by a strong and unexpected mode hybridization. This spin-wave phenomenon observed is a general effect inherent to the dynamics of sufficiently thick ferromagnetic single layer films, independent of the specific excitation method employed.
doi_str_mv 10.1103/PhysRevLett.122.117202
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2204696179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2204696179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-4cc2fe7029715d4ba4f8efa7f35ebe12cad7edd0b3bf98b7ff1412e33398a7d93</originalsourceid><addsrcrecordid>eNpdkNtKw0AQhhdRtB5eQQLeeBOd2d1kk0spnqCiqMXLsElmTSSHurut9u1NbRXxamD4_p-Zj7FjhDNEEOcP1dI90mJC3p8h58NSceBbbISg0lAhym02AhAYpgBqj-079wYAyONkl-0JSCMUUTxid-O-IkudDy4_i9prX_dd0JvghjzZ3i3blryti-BpVnfBi16QCz5qXwXTxlvtqt76721D3auv3CHbMbpxdLSZB2x6dfk8vgkn99e344tJWEgJPpRFwQ0p4KnCqJS5liYho5UREeWEvNClorKEXOQmTXJlDErkJIRIE63KVByw03XvzPbvc3I-a2tXUNPojvq5yzgHGacxqhV68g996-e2G65bUQplhHEyUPGaKoannSWTzWzdarvMELKV8OyP8GwQnq2FD8HjTf08b6n8jf0YFl8StIAv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207145168</pqid></control><display><type>article</type><title>Coherent Excitation of Heterosymmetric Spin Waves with Ultrashort Wavelengths</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dieterle, G ; Förster, J ; Stoll, H ; Semisalova, A S ; Finizio, S ; Gangwar, A ; Weigand, M ; Noske, M ; Fähnle, M ; Bykova, I ; Gräfe, J ; Bozhko, D A ; Musiienko-Shmarova, H Yu ; Tiberkevich, V ; Slavin, A N ; Back, C H ; Raabe, J ; Schütz, G ; Wintz, S</creator><creatorcontrib>Dieterle, G ; Förster, J ; Stoll, H ; Semisalova, A S ; Finizio, S ; Gangwar, A ; Weigand, M ; Noske, M ; Fähnle, M ; Bykova, I ; Gräfe, J ; Bozhko, D A ; Musiienko-Shmarova, H Yu ; Tiberkevich, V ; Slavin, A N ; Back, C H ; Raabe, J ; Schütz, G ; Wintz, S</creatorcontrib><description>In the emerging field of magnonics, spin waves are foreseen as signal carriers for future spintronic information processing and communication devices, owing to both the very low power losses and a high device miniaturization potential predicted for short-wavelength spin waves. Yet, the efficient excitation and controlled propagation of nanoscale spin waves remains a severe challenge. Here, we report the observation of high-amplitude, ultrashort dipole-exchange spin waves (down to 80 nm wavelength at 10 GHz frequency) in a ferromagnetic single layer system, coherently excited by the driven dynamics of a spin vortex core. We used time-resolved x-ray microscopy to directly image such propagating spin waves and their excitation over a wide range of frequencies. By further analysis, we found that these waves exhibit a heterosymmetric mode profile, involving regions with anti-Larmor precession sense and purely linear magnetic oscillation. In particular, this mode profile consists of dynamic vortices with laterally alternating helicity, leading to a partial magnetic flux closure over the film thickness, which is explained by a strong and unexpected mode hybridization. This spin-wave phenomenon observed is a general effect inherent to the dynamics of sufficiently thick ferromagnetic single layer films, independent of the specific excitation method employed.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.122.117202</identifier><identifier>PMID: 30951356</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Data processing ; Dipoles ; Electronic devices ; Excitation ; Ferromagnetic materials ; Film thickness ; Helicity ; Larmor precession ; Magnetic flux ; Magnons ; Miniaturization ; Power loss ; Predictive control ; Signal processing ; Spin dynamics ; Thick films ; Wave propagation ; X ray microscopy</subject><ispartof>Physical review letters, 2019-03, Vol.122 (11), p.117202-117202, Article 117202</ispartof><rights>Copyright American Physical Society Mar 22, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-4cc2fe7029715d4ba4f8efa7f35ebe12cad7edd0b3bf98b7ff1412e33398a7d93</citedby><cites>FETCH-LOGICAL-c440t-4cc2fe7029715d4ba4f8efa7f35ebe12cad7edd0b3bf98b7ff1412e33398a7d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30951356$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dieterle, G</creatorcontrib><creatorcontrib>Förster, J</creatorcontrib><creatorcontrib>Stoll, H</creatorcontrib><creatorcontrib>Semisalova, A S</creatorcontrib><creatorcontrib>Finizio, S</creatorcontrib><creatorcontrib>Gangwar, A</creatorcontrib><creatorcontrib>Weigand, M</creatorcontrib><creatorcontrib>Noske, M</creatorcontrib><creatorcontrib>Fähnle, M</creatorcontrib><creatorcontrib>Bykova, I</creatorcontrib><creatorcontrib>Gräfe, J</creatorcontrib><creatorcontrib>Bozhko, D A</creatorcontrib><creatorcontrib>Musiienko-Shmarova, H Yu</creatorcontrib><creatorcontrib>Tiberkevich, V</creatorcontrib><creatorcontrib>Slavin, A N</creatorcontrib><creatorcontrib>Back, C H</creatorcontrib><creatorcontrib>Raabe, J</creatorcontrib><creatorcontrib>Schütz, G</creatorcontrib><creatorcontrib>Wintz, S</creatorcontrib><title>Coherent Excitation of Heterosymmetric Spin Waves with Ultrashort Wavelengths</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>In the emerging field of magnonics, spin waves are foreseen as signal carriers for future spintronic information processing and communication devices, owing to both the very low power losses and a high device miniaturization potential predicted for short-wavelength spin waves. Yet, the efficient excitation and controlled propagation of nanoscale spin waves remains a severe challenge. Here, we report the observation of high-amplitude, ultrashort dipole-exchange spin waves (down to 80 nm wavelength at 10 GHz frequency) in a ferromagnetic single layer system, coherently excited by the driven dynamics of a spin vortex core. We used time-resolved x-ray microscopy to directly image such propagating spin waves and their excitation over a wide range of frequencies. By further analysis, we found that these waves exhibit a heterosymmetric mode profile, involving regions with anti-Larmor precession sense and purely linear magnetic oscillation. In particular, this mode profile consists of dynamic vortices with laterally alternating helicity, leading to a partial magnetic flux closure over the film thickness, which is explained by a strong and unexpected mode hybridization. This spin-wave phenomenon observed is a general effect inherent to the dynamics of sufficiently thick ferromagnetic single layer films, independent of the specific excitation method employed.</description><subject>Data processing</subject><subject>Dipoles</subject><subject>Electronic devices</subject><subject>Excitation</subject><subject>Ferromagnetic materials</subject><subject>Film thickness</subject><subject>Helicity</subject><subject>Larmor precession</subject><subject>Magnetic flux</subject><subject>Magnons</subject><subject>Miniaturization</subject><subject>Power loss</subject><subject>Predictive control</subject><subject>Signal processing</subject><subject>Spin dynamics</subject><subject>Thick films</subject><subject>Wave propagation</subject><subject>X ray microscopy</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkNtKw0AQhhdRtB5eQQLeeBOd2d1kk0spnqCiqMXLsElmTSSHurut9u1NbRXxamD4_p-Zj7FjhDNEEOcP1dI90mJC3p8h58NSceBbbISg0lAhym02AhAYpgBqj-079wYAyONkl-0JSCMUUTxid-O-IkudDy4_i9prX_dd0JvghjzZ3i3blryti-BpVnfBi16QCz5qXwXTxlvtqt76721D3auv3CHbMbpxdLSZB2x6dfk8vgkn99e344tJWEgJPpRFwQ0p4KnCqJS5liYho5UREeWEvNClorKEXOQmTXJlDErkJIRIE63KVByw03XvzPbvc3I-a2tXUNPojvq5yzgHGacxqhV68g996-e2G65bUQplhHEyUPGaKoannSWTzWzdarvMELKV8OyP8GwQnq2FD8HjTf08b6n8jf0YFl8StIAv</recordid><startdate>20190322</startdate><enddate>20190322</enddate><creator>Dieterle, G</creator><creator>Förster, J</creator><creator>Stoll, H</creator><creator>Semisalova, A S</creator><creator>Finizio, S</creator><creator>Gangwar, A</creator><creator>Weigand, M</creator><creator>Noske, M</creator><creator>Fähnle, M</creator><creator>Bykova, I</creator><creator>Gräfe, J</creator><creator>Bozhko, D A</creator><creator>Musiienko-Shmarova, H Yu</creator><creator>Tiberkevich, V</creator><creator>Slavin, A N</creator><creator>Back, C H</creator><creator>Raabe, J</creator><creator>Schütz, G</creator><creator>Wintz, S</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20190322</creationdate><title>Coherent Excitation of Heterosymmetric Spin Waves with Ultrashort Wavelengths</title><author>Dieterle, G ; Förster, J ; Stoll, H ; Semisalova, A S ; Finizio, S ; Gangwar, A ; Weigand, M ; Noske, M ; Fähnle, M ; Bykova, I ; Gräfe, J ; Bozhko, D A ; Musiienko-Shmarova, H Yu ; Tiberkevich, V ; Slavin, A N ; Back, C H ; Raabe, J ; Schütz, G ; Wintz, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-4cc2fe7029715d4ba4f8efa7f35ebe12cad7edd0b3bf98b7ff1412e33398a7d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data processing</topic><topic>Dipoles</topic><topic>Electronic devices</topic><topic>Excitation</topic><topic>Ferromagnetic materials</topic><topic>Film thickness</topic><topic>Helicity</topic><topic>Larmor precession</topic><topic>Magnetic flux</topic><topic>Magnons</topic><topic>Miniaturization</topic><topic>Power loss</topic><topic>Predictive control</topic><topic>Signal processing</topic><topic>Spin dynamics</topic><topic>Thick films</topic><topic>Wave propagation</topic><topic>X ray microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dieterle, G</creatorcontrib><creatorcontrib>Förster, J</creatorcontrib><creatorcontrib>Stoll, H</creatorcontrib><creatorcontrib>Semisalova, A S</creatorcontrib><creatorcontrib>Finizio, S</creatorcontrib><creatorcontrib>Gangwar, A</creatorcontrib><creatorcontrib>Weigand, M</creatorcontrib><creatorcontrib>Noske, M</creatorcontrib><creatorcontrib>Fähnle, M</creatorcontrib><creatorcontrib>Bykova, I</creatorcontrib><creatorcontrib>Gräfe, J</creatorcontrib><creatorcontrib>Bozhko, D A</creatorcontrib><creatorcontrib>Musiienko-Shmarova, H Yu</creatorcontrib><creatorcontrib>Tiberkevich, V</creatorcontrib><creatorcontrib>Slavin, A N</creatorcontrib><creatorcontrib>Back, C H</creatorcontrib><creatorcontrib>Raabe, J</creatorcontrib><creatorcontrib>Schütz, G</creatorcontrib><creatorcontrib>Wintz, S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dieterle, G</au><au>Förster, J</au><au>Stoll, H</au><au>Semisalova, A S</au><au>Finizio, S</au><au>Gangwar, A</au><au>Weigand, M</au><au>Noske, M</au><au>Fähnle, M</au><au>Bykova, I</au><au>Gräfe, J</au><au>Bozhko, D A</au><au>Musiienko-Shmarova, H Yu</au><au>Tiberkevich, V</au><au>Slavin, A N</au><au>Back, C H</au><au>Raabe, J</au><au>Schütz, G</au><au>Wintz, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent Excitation of Heterosymmetric Spin Waves with Ultrashort Wavelengths</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-03-22</date><risdate>2019</risdate><volume>122</volume><issue>11</issue><spage>117202</spage><epage>117202</epage><pages>117202-117202</pages><artnum>117202</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>In the emerging field of magnonics, spin waves are foreseen as signal carriers for future spintronic information processing and communication devices, owing to both the very low power losses and a high device miniaturization potential predicted for short-wavelength spin waves. Yet, the efficient excitation and controlled propagation of nanoscale spin waves remains a severe challenge. Here, we report the observation of high-amplitude, ultrashort dipole-exchange spin waves (down to 80 nm wavelength at 10 GHz frequency) in a ferromagnetic single layer system, coherently excited by the driven dynamics of a spin vortex core. We used time-resolved x-ray microscopy to directly image such propagating spin waves and their excitation over a wide range of frequencies. By further analysis, we found that these waves exhibit a heterosymmetric mode profile, involving regions with anti-Larmor precession sense and purely linear magnetic oscillation. In particular, this mode profile consists of dynamic vortices with laterally alternating helicity, leading to a partial magnetic flux closure over the film thickness, which is explained by a strong and unexpected mode hybridization. This spin-wave phenomenon observed is a general effect inherent to the dynamics of sufficiently thick ferromagnetic single layer films, independent of the specific excitation method employed.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>30951356</pmid><doi>10.1103/PhysRevLett.122.117202</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2019-03, Vol.122 (11), p.117202-117202, Article 117202
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2204696179
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Data processing
Dipoles
Electronic devices
Excitation
Ferromagnetic materials
Film thickness
Helicity
Larmor precession
Magnetic flux
Magnons
Miniaturization
Power loss
Predictive control
Signal processing
Spin dynamics
Thick films
Wave propagation
X ray microscopy
title Coherent Excitation of Heterosymmetric Spin Waves with Ultrashort Wavelengths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20Excitation%20of%20Heterosymmetric%20Spin%20Waves%20with%20Ultrashort%20Wavelengths&rft.jtitle=Physical%20review%20letters&rft.au=Dieterle,%20G&rft.date=2019-03-22&rft.volume=122&rft.issue=11&rft.spage=117202&rft.epage=117202&rft.pages=117202-117202&rft.artnum=117202&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.122.117202&rft_dat=%3Cproquest_cross%3E2204696179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207145168&rft_id=info:pmid/30951356&rfr_iscdi=true