One-step synthesis of boron-doped graphene quantum dots for fluorescent sensors and biosensor

Heteroatom doping can endow graphene quantum dots (GQDs) with various new or improved structural, optical and physicochemical properties. In contrast to the widely reported oxygen, nitrogen or sulfur doping in GQDs, simple and scalable synthesis of boron-doped GQDs (B-GQDs) with high yield and quant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2019-07, Vol.199, p.581-589
Hauptverfasser: Ge, Shuyan, He, Jingbo, Ma, Chenxing, Liu, Jiyang, Xi, Fengna, Dong, Xiaoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 589
container_issue
container_start_page 581
container_title Talanta (Oxford)
container_volume 199
creator Ge, Shuyan
He, Jingbo
Ma, Chenxing
Liu, Jiyang
Xi, Fengna
Dong, Xiaoping
description Heteroatom doping can endow graphene quantum dots (GQDs) with various new or improved structural, optical and physicochemical properties. In contrast to the widely reported oxygen, nitrogen or sulfur doping in GQDs, simple and scalable synthesis of boron-doped GQDs (B-GQDs) with high yield and quantum yields remains challenge. In this work, B-GQDs are one-step synthesized and serve as the fluorescence probes for the fabrication of sensors towards Fe3+ ion or phosphate (Pi) as well as biosensor towards cytochrome C (Cyt C). The B-GQDs are facile synthesized using one-step bottom-up molecular fusion between 1,3,6-trinitropyrene and borax in sodium hydroxide under hydrothermal process. The synthesis can be performed using large volume autoclave (500 ml) with a high yield of 71%, indicating possibility for gram-scale production of B-GQDs. The as-prepared B-GQDs exhibit single or bilayer graphene structure, high crystallinity, uniform size, bright (absolute photoluminescence quantum yield of 16.8%) and excitation-independent green fluorescence (maximum excitation wavelength and emission wavelength of 480 nm and 520 nm, respectively). Successful doping of B atoms in the lattice of GQDs enables high selectivity towards Fe3+. Based on quenching of fluorescence of B-GQDs by Fe3+ (turn-off model), detection of Fe3+ (with limit of detection-LOD of 31.2 nM) and Fe3+-rich Cyt C (with LOD of 5.9 μg/ml) are demonstrated. As Pi can recover Fe3+-quenched fluorescence of B-GQDs (turn-off-on model), indirect fluorescent detection of Pi is also achieved with LOD of 340 nM. In addition, detection of Fe3+, Cyt C and Pi in real samples is achieved. [Display omitted] •B doped GQDs (B-GQDs) are facile prepared using one-step hydrothermal process.•Fluorescence sensor for sensitive detection of Fe3+ is achieved with B-GQDs as probe.•Fluorescence biosensor for detection of cytochrome C using B-GQDs is demonstrated.•Indirect detection of phosphate is achieved by recovery of Fe3+-quenched fluorescence.
doi_str_mv 10.1016/j.talanta.2019.02.098
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2204694230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039914019302413</els_id><sourcerecordid>2204694230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-77469223f12407121480ab10096119a40c5f3291e5a38c3a6facd5f63ca20f673</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVoSBy3P6FFx152M5L2wzqVEvIFgVySYxCydtSssaWNRlvIv4-M3Vx7mhl4Z955H8a-C6gFiO5yU2e7tSHbWoLQNcga9OqELcSqV5Vqe_WFLQCUrrRo4JxdEG0AQCpQZ-xcgW5LKxbs5TFgRRknTu8hvyKNxKPn65hiqIY44cD_JDu9YkD-Nhe_eceHmIn7mLjfzjEhOQyZEwaKibgNA1-P8TB-Zafebgm_HeuSPd9cP13dVQ-Pt_dXvx8q1yiRq75vOi2l8kI20AspmhXYtQDQnRDaNuBar6QW2Fq1csp23rqh9Z1yVoLverVkPw93pxTfZqRsdmN5a1sAYZzJSAnFodmnX7L2IHUpEiX0ZkrjzqZ3I8DsyZqNOZI1e7IGpClky96Po8W83uHwufUPZRH8OgiwBP07YjLkRgwOhzGhy2aI438sPgD2WYzK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2204694230</pqid></control><display><type>article</type><title>One-step synthesis of boron-doped graphene quantum dots for fluorescent sensors and biosensor</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ge, Shuyan ; He, Jingbo ; Ma, Chenxing ; Liu, Jiyang ; Xi, Fengna ; Dong, Xiaoping</creator><creatorcontrib>Ge, Shuyan ; He, Jingbo ; Ma, Chenxing ; Liu, Jiyang ; Xi, Fengna ; Dong, Xiaoping</creatorcontrib><description>Heteroatom doping can endow graphene quantum dots (GQDs) with various new or improved structural, optical and physicochemical properties. In contrast to the widely reported oxygen, nitrogen or sulfur doping in GQDs, simple and scalable synthesis of boron-doped GQDs (B-GQDs) with high yield and quantum yields remains challenge. In this work, B-GQDs are one-step synthesized and serve as the fluorescence probes for the fabrication of sensors towards Fe3+ ion or phosphate (Pi) as well as biosensor towards cytochrome C (Cyt C). The B-GQDs are facile synthesized using one-step bottom-up molecular fusion between 1,3,6-trinitropyrene and borax in sodium hydroxide under hydrothermal process. The synthesis can be performed using large volume autoclave (500 ml) with a high yield of 71%, indicating possibility for gram-scale production of B-GQDs. The as-prepared B-GQDs exhibit single or bilayer graphene structure, high crystallinity, uniform size, bright (absolute photoluminescence quantum yield of 16.8%) and excitation-independent green fluorescence (maximum excitation wavelength and emission wavelength of 480 nm and 520 nm, respectively). Successful doping of B atoms in the lattice of GQDs enables high selectivity towards Fe3+. Based on quenching of fluorescence of B-GQDs by Fe3+ (turn-off model), detection of Fe3+ (with limit of detection-LOD of 31.2 nM) and Fe3+-rich Cyt C (with LOD of 5.9 μg/ml) are demonstrated. As Pi can recover Fe3+-quenched fluorescence of B-GQDs (turn-off-on model), indirect fluorescent detection of Pi is also achieved with LOD of 340 nM. In addition, detection of Fe3+, Cyt C and Pi in real samples is achieved. [Display omitted] •B doped GQDs (B-GQDs) are facile prepared using one-step hydrothermal process.•Fluorescence sensor for sensitive detection of Fe3+ is achieved with B-GQDs as probe.•Fluorescence biosensor for detection of cytochrome C using B-GQDs is demonstrated.•Indirect detection of phosphate is achieved by recovery of Fe3+-quenched fluorescence.</description><identifier>ISSN: 0039-9140</identifier><identifier>EISSN: 1873-3573</identifier><identifier>DOI: 10.1016/j.talanta.2019.02.098</identifier><identifier>PMID: 30952301</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biosensing Techniques ; Boron - chemistry ; Boron-doped graphene quantum dots ; Cytochrome C ; Cytochromes c - analysis ; Ferric Compounds - analysis ; Fluorescence ; Fluorescent detection ; Graphite - chemistry ; Metal ion ; Particle Size ; Phosphates - analysis ; Phosphote ; Quantum Dots - chemistry ; Spectrometry, Fluorescence ; Surface Properties</subject><ispartof>Talanta (Oxford), 2019-07, Vol.199, p.581-589</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-77469223f12407121480ab10096119a40c5f3291e5a38c3a6facd5f63ca20f673</citedby><cites>FETCH-LOGICAL-c431t-77469223f12407121480ab10096119a40c5f3291e5a38c3a6facd5f63ca20f673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.talanta.2019.02.098$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30952301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ge, Shuyan</creatorcontrib><creatorcontrib>He, Jingbo</creatorcontrib><creatorcontrib>Ma, Chenxing</creatorcontrib><creatorcontrib>Liu, Jiyang</creatorcontrib><creatorcontrib>Xi, Fengna</creatorcontrib><creatorcontrib>Dong, Xiaoping</creatorcontrib><title>One-step synthesis of boron-doped graphene quantum dots for fluorescent sensors and biosensor</title><title>Talanta (Oxford)</title><addtitle>Talanta</addtitle><description>Heteroatom doping can endow graphene quantum dots (GQDs) with various new or improved structural, optical and physicochemical properties. In contrast to the widely reported oxygen, nitrogen or sulfur doping in GQDs, simple and scalable synthesis of boron-doped GQDs (B-GQDs) with high yield and quantum yields remains challenge. In this work, B-GQDs are one-step synthesized and serve as the fluorescence probes for the fabrication of sensors towards Fe3+ ion or phosphate (Pi) as well as biosensor towards cytochrome C (Cyt C). The B-GQDs are facile synthesized using one-step bottom-up molecular fusion between 1,3,6-trinitropyrene and borax in sodium hydroxide under hydrothermal process. The synthesis can be performed using large volume autoclave (500 ml) with a high yield of 71%, indicating possibility for gram-scale production of B-GQDs. The as-prepared B-GQDs exhibit single or bilayer graphene structure, high crystallinity, uniform size, bright (absolute photoluminescence quantum yield of 16.8%) and excitation-independent green fluorescence (maximum excitation wavelength and emission wavelength of 480 nm and 520 nm, respectively). Successful doping of B atoms in the lattice of GQDs enables high selectivity towards Fe3+. Based on quenching of fluorescence of B-GQDs by Fe3+ (turn-off model), detection of Fe3+ (with limit of detection-LOD of 31.2 nM) and Fe3+-rich Cyt C (with LOD of 5.9 μg/ml) are demonstrated. As Pi can recover Fe3+-quenched fluorescence of B-GQDs (turn-off-on model), indirect fluorescent detection of Pi is also achieved with LOD of 340 nM. In addition, detection of Fe3+, Cyt C and Pi in real samples is achieved. [Display omitted] •B doped GQDs (B-GQDs) are facile prepared using one-step hydrothermal process.•Fluorescence sensor for sensitive detection of Fe3+ is achieved with B-GQDs as probe.•Fluorescence biosensor for detection of cytochrome C using B-GQDs is demonstrated.•Indirect detection of phosphate is achieved by recovery of Fe3+-quenched fluorescence.</description><subject>Biosensing Techniques</subject><subject>Boron - chemistry</subject><subject>Boron-doped graphene quantum dots</subject><subject>Cytochrome C</subject><subject>Cytochromes c - analysis</subject><subject>Ferric Compounds - analysis</subject><subject>Fluorescence</subject><subject>Fluorescent detection</subject><subject>Graphite - chemistry</subject><subject>Metal ion</subject><subject>Particle Size</subject><subject>Phosphates - analysis</subject><subject>Phosphote</subject><subject>Quantum Dots - chemistry</subject><subject>Spectrometry, Fluorescence</subject><subject>Surface Properties</subject><issn>0039-9140</issn><issn>1873-3573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1rGzEQhkVoSBy3P6FFx152M5L2wzqVEvIFgVySYxCydtSssaWNRlvIv4-M3Vx7mhl4Z955H8a-C6gFiO5yU2e7tSHbWoLQNcga9OqELcSqV5Vqe_WFLQCUrrRo4JxdEG0AQCpQZ-xcgW5LKxbs5TFgRRknTu8hvyKNxKPn65hiqIY44cD_JDu9YkD-Nhe_eceHmIn7mLjfzjEhOQyZEwaKibgNA1-P8TB-Zafebgm_HeuSPd9cP13dVQ-Pt_dXvx8q1yiRq75vOi2l8kI20AspmhXYtQDQnRDaNuBar6QW2Fq1csp23rqh9Z1yVoLverVkPw93pxTfZqRsdmN5a1sAYZzJSAnFodmnX7L2IHUpEiX0ZkrjzqZ3I8DsyZqNOZI1e7IGpClky96Po8W83uHwufUPZRH8OgiwBP07YjLkRgwOhzGhy2aI438sPgD2WYzK</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Ge, Shuyan</creator><creator>He, Jingbo</creator><creator>Ma, Chenxing</creator><creator>Liu, Jiyang</creator><creator>Xi, Fengna</creator><creator>Dong, Xiaoping</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20190701</creationdate><title>One-step synthesis of boron-doped graphene quantum dots for fluorescent sensors and biosensor</title><author>Ge, Shuyan ; He, Jingbo ; Ma, Chenxing ; Liu, Jiyang ; Xi, Fengna ; Dong, Xiaoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-77469223f12407121480ab10096119a40c5f3291e5a38c3a6facd5f63ca20f673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biosensing Techniques</topic><topic>Boron - chemistry</topic><topic>Boron-doped graphene quantum dots</topic><topic>Cytochrome C</topic><topic>Cytochromes c - analysis</topic><topic>Ferric Compounds - analysis</topic><topic>Fluorescence</topic><topic>Fluorescent detection</topic><topic>Graphite - chemistry</topic><topic>Metal ion</topic><topic>Particle Size</topic><topic>Phosphates - analysis</topic><topic>Phosphote</topic><topic>Quantum Dots - chemistry</topic><topic>Spectrometry, Fluorescence</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Shuyan</creatorcontrib><creatorcontrib>He, Jingbo</creatorcontrib><creatorcontrib>Ma, Chenxing</creatorcontrib><creatorcontrib>Liu, Jiyang</creatorcontrib><creatorcontrib>Xi, Fengna</creatorcontrib><creatorcontrib>Dong, Xiaoping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Talanta (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Shuyan</au><au>He, Jingbo</au><au>Ma, Chenxing</au><au>Liu, Jiyang</au><au>Xi, Fengna</au><au>Dong, Xiaoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-step synthesis of boron-doped graphene quantum dots for fluorescent sensors and biosensor</atitle><jtitle>Talanta (Oxford)</jtitle><addtitle>Talanta</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>199</volume><spage>581</spage><epage>589</epage><pages>581-589</pages><issn>0039-9140</issn><eissn>1873-3573</eissn><abstract>Heteroatom doping can endow graphene quantum dots (GQDs) with various new or improved structural, optical and physicochemical properties. In contrast to the widely reported oxygen, nitrogen or sulfur doping in GQDs, simple and scalable synthesis of boron-doped GQDs (B-GQDs) with high yield and quantum yields remains challenge. In this work, B-GQDs are one-step synthesized and serve as the fluorescence probes for the fabrication of sensors towards Fe3+ ion or phosphate (Pi) as well as biosensor towards cytochrome C (Cyt C). The B-GQDs are facile synthesized using one-step bottom-up molecular fusion between 1,3,6-trinitropyrene and borax in sodium hydroxide under hydrothermal process. The synthesis can be performed using large volume autoclave (500 ml) with a high yield of 71%, indicating possibility for gram-scale production of B-GQDs. The as-prepared B-GQDs exhibit single or bilayer graphene structure, high crystallinity, uniform size, bright (absolute photoluminescence quantum yield of 16.8%) and excitation-independent green fluorescence (maximum excitation wavelength and emission wavelength of 480 nm and 520 nm, respectively). Successful doping of B atoms in the lattice of GQDs enables high selectivity towards Fe3+. Based on quenching of fluorescence of B-GQDs by Fe3+ (turn-off model), detection of Fe3+ (with limit of detection-LOD of 31.2 nM) and Fe3+-rich Cyt C (with LOD of 5.9 μg/ml) are demonstrated. As Pi can recover Fe3+-quenched fluorescence of B-GQDs (turn-off-on model), indirect fluorescent detection of Pi is also achieved with LOD of 340 nM. In addition, detection of Fe3+, Cyt C and Pi in real samples is achieved. [Display omitted] •B doped GQDs (B-GQDs) are facile prepared using one-step hydrothermal process.•Fluorescence sensor for sensitive detection of Fe3+ is achieved with B-GQDs as probe.•Fluorescence biosensor for detection of cytochrome C using B-GQDs is demonstrated.•Indirect detection of phosphate is achieved by recovery of Fe3+-quenched fluorescence.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30952301</pmid><doi>10.1016/j.talanta.2019.02.098</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-9140
ispartof Talanta (Oxford), 2019-07, Vol.199, p.581-589
issn 0039-9140
1873-3573
language eng
recordid cdi_proquest_miscellaneous_2204694230
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biosensing Techniques
Boron - chemistry
Boron-doped graphene quantum dots
Cytochrome C
Cytochromes c - analysis
Ferric Compounds - analysis
Fluorescence
Fluorescent detection
Graphite - chemistry
Metal ion
Particle Size
Phosphates - analysis
Phosphote
Quantum Dots - chemistry
Spectrometry, Fluorescence
Surface Properties
title One-step synthesis of boron-doped graphene quantum dots for fluorescent sensors and biosensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-step%20synthesis%20of%20boron-doped%20graphene%20quantum%20dots%20for%20fluorescent%20sensors%20and%20biosensor&rft.jtitle=Talanta%20(Oxford)&rft.au=Ge,%20Shuyan&rft.date=2019-07-01&rft.volume=199&rft.spage=581&rft.epage=589&rft.pages=581-589&rft.issn=0039-9140&rft.eissn=1873-3573&rft_id=info:doi/10.1016/j.talanta.2019.02.098&rft_dat=%3Cproquest_cross%3E2204694230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2204694230&rft_id=info:pmid/30952301&rft_els_id=S0039914019302413&rfr_iscdi=true