Excimer ultraviolet-irradiated exfoliated graphite loaded with carbon-coated SnOx small nanoparticles as advanced anodes for high-rate-capacity lithium-ion batteries
This paper reports a fast and efficient excimer ultraviolet (EUV) radiation method to prepare carbon-coated mixed tin oxide-loaded exfoliated graphite (SnOx@C-G) nanocomposites. The SnOx small nanoparticles (SNPs) are isolated using oxidized sucrose and uniformly deposited onto mildly oxidized exfol...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2019-01, Vol.11 (16), p.7744-7753 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7753 |
---|---|
container_issue | 16 |
container_start_page | 7744 |
container_title | Nanoscale |
container_volume | 11 |
creator | Shen, Zhen Hu, Yi Chen, Renzhong He, Xia Wu, Keshi Cheng, Zhongling Pan, Peng Jiang, Liyuan Mao, Jieting Ni, Changke |
description | This paper reports a fast and efficient excimer ultraviolet (EUV) radiation method to prepare carbon-coated mixed tin oxide-loaded exfoliated graphite (SnOx@C-G) nanocomposites. The SnOx small nanoparticles (SNPs) are isolated using oxidized sucrose and uniformly deposited onto mildly oxidized exfoliated graphite during the 20-minute EUV radiation process. XPS and ESR analyses suggest the existence of abundant oxygen vacancies in the SnOx SNPs. The electrochemical kinetics of SnOx@C-G, which are determined by in situ electrochemical impedance analysis, demonstrated a high reversible capacity of approximately 740 mA h g−1 after 250 cycles at a current density of 1.6 A g−1, and an impressive reversible rate performance exceeding 450 mA h g−1 can be obtained even at a high current density of 3.2 A g−1 when applied as an anode for lithium storage. This improved cycling stability and rate capability benefit from the carbon coating, which not only buffers the volume change of SnOx SNPs but also provides a path for electron transport on the surface of the SnOx SNPs during the electrochemical process. Furthermore, the oxygen vacancies in SnOx SNPs result in a large capacitive contribution to capacity. The EUV radiation method used to synthesize SnOx@C-graphite nanosheets is universally applicable to prepare a high-performance SNPs/carbon-based anode for lithium-ion batteries. |
doi_str_mv | 10.1039/c8nr10379h |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2204692950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2204692950</sourcerecordid><originalsourceid>FETCH-LOGICAL-g183t-8a09f741b439ef6fac04c78cb608d9315b3230ad39bbd753822a8a74ef58a0d43</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhhdRsFYv_oKAFy_RbLJfOUqpH1DoQT2X2STbTckma5Kt9Qf5Pw0qHoSBeWfmeYdhsuwyJzc5YfxWNNYnUfP-KJtRUhDMWE2P_3RVnGZnIewIqTir2Cz7XB6EHpRHk4ke9toZFbH2HqSGqCRSh86ZH7n1MPY6KmQcyFS_69gjAb51Fgv3jTzb9QGFAYxBFqwbwUctjAoIUsg9WJGgNJCp1TmPer3tsU9WLGAEoeMHMmmrngasnUUtxKi8VuE8O-nABHXxm-fZ6_3yZfGIV-uHp8XdCm_zhkXcAOFdXeRtwbjqqg4EKUTdiLYijeQsL1tGGQHJeNvKumQNpdBAXaiuTFZZsHl2_bN39O5tUiFuBh2EMgasclPY0PTGilNekoRe_UN3bvI2XZeonHJaFzVjX0R8fzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212927473</pqid></control><display><type>article</type><title>Excimer ultraviolet-irradiated exfoliated graphite loaded with carbon-coated SnOx small nanoparticles as advanced anodes for high-rate-capacity lithium-ion batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Shen, Zhen ; Hu, Yi ; Chen, Renzhong ; He, Xia ; Wu, Keshi ; Cheng, Zhongling ; Pan, Peng ; Jiang, Liyuan ; Mao, Jieting ; Ni, Changke</creator><creatorcontrib>Shen, Zhen ; Hu, Yi ; Chen, Renzhong ; He, Xia ; Wu, Keshi ; Cheng, Zhongling ; Pan, Peng ; Jiang, Liyuan ; Mao, Jieting ; Ni, Changke</creatorcontrib><description>This paper reports a fast and efficient excimer ultraviolet (EUV) radiation method to prepare carbon-coated mixed tin oxide-loaded exfoliated graphite (SnOx@C-G) nanocomposites. The SnOx small nanoparticles (SNPs) are isolated using oxidized sucrose and uniformly deposited onto mildly oxidized exfoliated graphite during the 20-minute EUV radiation process. XPS and ESR analyses suggest the existence of abundant oxygen vacancies in the SnOx SNPs. The electrochemical kinetics of SnOx@C-G, which are determined by in situ electrochemical impedance analysis, demonstrated a high reversible capacity of approximately 740 mA h g−1 after 250 cycles at a current density of 1.6 A g−1, and an impressive reversible rate performance exceeding 450 mA h g−1 can be obtained even at a high current density of 3.2 A g−1 when applied as an anode for lithium storage. This improved cycling stability and rate capability benefit from the carbon coating, which not only buffers the volume change of SnOx SNPs but also provides a path for electron transport on the surface of the SnOx SNPs during the electrochemical process. Furthermore, the oxygen vacancies in SnOx SNPs result in a large capacitive contribution to capacity. The EUV radiation method used to synthesize SnOx@C-graphite nanosheets is universally applicable to prepare a high-performance SNPs/carbon-based anode for lithium-ion batteries.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr10379h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Carbon ; Current density ; Electron transport ; Excimers ; Graphite ; Lithium ; Lithium-ion batteries ; Nanocomposites ; Nanoparticles ; Rechargeable batteries ; Sucrose ; Tin oxides ; Vacancies ; X ray photoelectron spectroscopy</subject><ispartof>Nanoscale, 2019-01, Vol.11 (16), p.7744-7753</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shen, Zhen</creatorcontrib><creatorcontrib>Hu, Yi</creatorcontrib><creatorcontrib>Chen, Renzhong</creatorcontrib><creatorcontrib>He, Xia</creatorcontrib><creatorcontrib>Wu, Keshi</creatorcontrib><creatorcontrib>Cheng, Zhongling</creatorcontrib><creatorcontrib>Pan, Peng</creatorcontrib><creatorcontrib>Jiang, Liyuan</creatorcontrib><creatorcontrib>Mao, Jieting</creatorcontrib><creatorcontrib>Ni, Changke</creatorcontrib><title>Excimer ultraviolet-irradiated exfoliated graphite loaded with carbon-coated SnOx small nanoparticles as advanced anodes for high-rate-capacity lithium-ion batteries</title><title>Nanoscale</title><description>This paper reports a fast and efficient excimer ultraviolet (EUV) radiation method to prepare carbon-coated mixed tin oxide-loaded exfoliated graphite (SnOx@C-G) nanocomposites. The SnOx small nanoparticles (SNPs) are isolated using oxidized sucrose and uniformly deposited onto mildly oxidized exfoliated graphite during the 20-minute EUV radiation process. XPS and ESR analyses suggest the existence of abundant oxygen vacancies in the SnOx SNPs. The electrochemical kinetics of SnOx@C-G, which are determined by in situ electrochemical impedance analysis, demonstrated a high reversible capacity of approximately 740 mA h g−1 after 250 cycles at a current density of 1.6 A g−1, and an impressive reversible rate performance exceeding 450 mA h g−1 can be obtained even at a high current density of 3.2 A g−1 when applied as an anode for lithium storage. This improved cycling stability and rate capability benefit from the carbon coating, which not only buffers the volume change of SnOx SNPs but also provides a path for electron transport on the surface of the SnOx SNPs during the electrochemical process. Furthermore, the oxygen vacancies in SnOx SNPs result in a large capacitive contribution to capacity. The EUV radiation method used to synthesize SnOx@C-graphite nanosheets is universally applicable to prepare a high-performance SNPs/carbon-based anode for lithium-ion batteries.</description><subject>Anodes</subject><subject>Carbon</subject><subject>Current density</subject><subject>Electron transport</subject><subject>Excimers</subject><subject>Graphite</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Rechargeable batteries</subject><subject>Sucrose</subject><subject>Tin oxides</subject><subject>Vacancies</subject><subject>X ray photoelectron spectroscopy</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhhdRsFYv_oKAFy_RbLJfOUqpH1DoQT2X2STbTckma5Kt9Qf5Pw0qHoSBeWfmeYdhsuwyJzc5YfxWNNYnUfP-KJtRUhDMWE2P_3RVnGZnIewIqTir2Cz7XB6EHpRHk4ke9toZFbH2HqSGqCRSh86ZH7n1MPY6KmQcyFS_69gjAb51Fgv3jTzb9QGFAYxBFqwbwUctjAoIUsg9WJGgNJCp1TmPer3tsU9WLGAEoeMHMmmrngasnUUtxKi8VuE8O-nABHXxm-fZ6_3yZfGIV-uHp8XdCm_zhkXcAOFdXeRtwbjqqg4EKUTdiLYijeQsL1tGGQHJeNvKumQNpdBAXaiuTFZZsHl2_bN39O5tUiFuBh2EMgasclPY0PTGilNekoRe_UN3bvI2XZeonHJaFzVjX0R8fzo</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Shen, Zhen</creator><creator>Hu, Yi</creator><creator>Chen, Renzhong</creator><creator>He, Xia</creator><creator>Wu, Keshi</creator><creator>Cheng, Zhongling</creator><creator>Pan, Peng</creator><creator>Jiang, Liyuan</creator><creator>Mao, Jieting</creator><creator>Ni, Changke</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20190101</creationdate><title>Excimer ultraviolet-irradiated exfoliated graphite loaded with carbon-coated SnOx small nanoparticles as advanced anodes for high-rate-capacity lithium-ion batteries</title><author>Shen, Zhen ; Hu, Yi ; Chen, Renzhong ; He, Xia ; Wu, Keshi ; Cheng, Zhongling ; Pan, Peng ; Jiang, Liyuan ; Mao, Jieting ; Ni, Changke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g183t-8a09f741b439ef6fac04c78cb608d9315b3230ad39bbd753822a8a74ef58a0d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodes</topic><topic>Carbon</topic><topic>Current density</topic><topic>Electron transport</topic><topic>Excimers</topic><topic>Graphite</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Rechargeable batteries</topic><topic>Sucrose</topic><topic>Tin oxides</topic><topic>Vacancies</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Zhen</creatorcontrib><creatorcontrib>Hu, Yi</creatorcontrib><creatorcontrib>Chen, Renzhong</creatorcontrib><creatorcontrib>He, Xia</creatorcontrib><creatorcontrib>Wu, Keshi</creatorcontrib><creatorcontrib>Cheng, Zhongling</creatorcontrib><creatorcontrib>Pan, Peng</creatorcontrib><creatorcontrib>Jiang, Liyuan</creatorcontrib><creatorcontrib>Mao, Jieting</creatorcontrib><creatorcontrib>Ni, Changke</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Zhen</au><au>Hu, Yi</au><au>Chen, Renzhong</au><au>He, Xia</au><au>Wu, Keshi</au><au>Cheng, Zhongling</au><au>Pan, Peng</au><au>Jiang, Liyuan</au><au>Mao, Jieting</au><au>Ni, Changke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excimer ultraviolet-irradiated exfoliated graphite loaded with carbon-coated SnOx small nanoparticles as advanced anodes for high-rate-capacity lithium-ion batteries</atitle><jtitle>Nanoscale</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>11</volume><issue>16</issue><spage>7744</spage><epage>7753</epage><pages>7744-7753</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>This paper reports a fast and efficient excimer ultraviolet (EUV) radiation method to prepare carbon-coated mixed tin oxide-loaded exfoliated graphite (SnOx@C-G) nanocomposites. The SnOx small nanoparticles (SNPs) are isolated using oxidized sucrose and uniformly deposited onto mildly oxidized exfoliated graphite during the 20-minute EUV radiation process. XPS and ESR analyses suggest the existence of abundant oxygen vacancies in the SnOx SNPs. The electrochemical kinetics of SnOx@C-G, which are determined by in situ electrochemical impedance analysis, demonstrated a high reversible capacity of approximately 740 mA h g−1 after 250 cycles at a current density of 1.6 A g−1, and an impressive reversible rate performance exceeding 450 mA h g−1 can be obtained even at a high current density of 3.2 A g−1 when applied as an anode for lithium storage. This improved cycling stability and rate capability benefit from the carbon coating, which not only buffers the volume change of SnOx SNPs but also provides a path for electron transport on the surface of the SnOx SNPs during the electrochemical process. Furthermore, the oxygen vacancies in SnOx SNPs result in a large capacitive contribution to capacity. The EUV radiation method used to synthesize SnOx@C-graphite nanosheets is universally applicable to prepare a high-performance SNPs/carbon-based anode for lithium-ion batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8nr10379h</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2019-01, Vol.11 (16), p.7744-7753 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2204692950 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Anodes Carbon Current density Electron transport Excimers Graphite Lithium Lithium-ion batteries Nanocomposites Nanoparticles Rechargeable batteries Sucrose Tin oxides Vacancies X ray photoelectron spectroscopy |
title | Excimer ultraviolet-irradiated exfoliated graphite loaded with carbon-coated SnOx small nanoparticles as advanced anodes for high-rate-capacity lithium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excimer%20ultraviolet-irradiated%20exfoliated%20graphite%20loaded%20with%20carbon-coated%20SnOx%20small%20nanoparticles%20as%20advanced%20anodes%20for%20high-rate-capacity%20lithium-ion%20batteries&rft.jtitle=Nanoscale&rft.au=Shen,%20Zhen&rft.date=2019-01-01&rft.volume=11&rft.issue=16&rft.spage=7744&rft.epage=7753&rft.pages=7744-7753&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr10379h&rft_dat=%3Cproquest%3E2204692950%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2212927473&rft_id=info:pmid/&rfr_iscdi=true |