The Influence of Cu and Al Additives on Reduction of Iron(III) Oxide: In Situ XRD and XANES Study

The reduction of Fe-based nanocomposite catalysts doped with Al and Cu has been studied using in situ X-ray diffraction (XRD), in situ X-ray absorption near-edge structure (XANES), and temperature-programmed reduction (TPR) techniques. The catalysts have been synthesized by melting of iron, aluminum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2019-04, Vol.58 (8), p.4842-4850
Hauptverfasser: Bulavchenko, Olga A, Vinokurov, Zakhar S, Saraev, Andrey A, Tsapina, Anna M, Trigub, Alexander L, Gerasimov, Evgeny Yu, Gladky, Alexey Yu, Fedorov, Alexander V, Yakovlev, Vadim A, Kaichev, Vasily V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4850
container_issue 8
container_start_page 4842
container_title Inorganic chemistry
container_volume 58
creator Bulavchenko, Olga A
Vinokurov, Zakhar S
Saraev, Andrey A
Tsapina, Anna M
Trigub, Alexander L
Gerasimov, Evgeny Yu
Gladky, Alexey Yu
Fedorov, Alexander V
Yakovlev, Vadim A
Kaichev, Vasily V
description The reduction of Fe-based nanocomposite catalysts doped with Al and Cu has been studied using in situ X-ray diffraction (XRD), in situ X-ray absorption near-edge structure (XANES), and temperature-programmed reduction (TPR) techniques. The catalysts have been synthesized by melting of iron, aluminum, and copper salts. According to XRD, the catalysts consist mainly of Fe2O3 and Al2O3 phases. Alumina is in an amorphous state, whereas iron oxide forms nanoparticles with the protohematite structure. The Al3+ cations are partially dissolved in the Fe2O3 lattice. Due to strong alumina–iron oxide interaction, the specific surface area of the catalysts increases significantly. TPR and XANES data indicate that copper forms highly dispersed surface CuO nanoparticles and partially dissolves in iron oxide. It has been shown that the reduction of iron­(III) oxide by CO proceeds via two routes: a direct two-stage reduction of iron­(III) oxide to metal (Fe2O3 → Fe3O4 → Fe) or an indirect three-stage reduction with the formation of FeO intermediate phases (Fe2O3 → Fe3O4 → FeO → Fe). The introduction of Al into Fe2O3 leads to a decrease in the rate for all reduction steps. In addition, the introduction of Al stabilizes small Fe3O4 particles and prevents further sintering of the iron oxide. The mechanism of stabilization is associated with the formation of Fe3–x Al x O4 solid solution. The addition of copper to the Fe–Al catalyst leads to the formation of highly dispersed CuO particles on the catalyst surface and a mixed oxide with a spinel-type crystalline structure similar to that of CuFe2O4. The low-temperature reduction of Cu2+ to Cu0 accelerates the Fe2O3 → Fe3O4 and FeO → Fe transformations but does not affect the Fe3O4 → FeO/Fe stages. These changes in the reduction properties significantly affect the catalytic performance of the Fe-based nanocomposite catalysts in the low-temperature oxidation of CO.
doi_str_mv 10.1021/acs.inorgchem.8b03403
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2204687761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2204687761</sourcerecordid><originalsourceid>FETCH-LOGICAL-a421t-937ca6d182f2060ad1f256d9db4e40b2322f5ff2dd18ee81b3c679f3ea9c51393</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EgvL4BJCXsGgZ24nTsKtKgUiISi1I3UWOPYZUaVLiGNG_x9DCltXM4tw7mkPIOYMBA86ulXaDsm7aV_2Gq8GwABGB2CM9FnPoxwwW-6QHEHYmZXpEjp1bAkAqInlIjgSkkYyTuEfU8xvSrLaVx1ojbSwde6pqQ0cVHRlTduUHOtrUdIbG664MW2Cytqkvsyy7otPP0uBNaKDzsvN0Mbv9SS9GT5M5nXfebE7JgVWVw7PdPCEvd5Pn8UP_cXqfjUePfRVx1vVTkWglDRtyy0GCMszyWJrUFBFGUHDBuY2t5SYgiENWCC2T1ApUqY6ZSMUJudz2rtvm3aPr8lXpNFaVqrHxLuccIjlMEskCGm9R3TbOtWjzdVuuVLvJGeTfdvNgN_-zm-_shtzF7oQvVmj-Ur86A8C2wHd-2fi2Dh__U_oFUWCH1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2204687761</pqid></control><display><type>article</type><title>The Influence of Cu and Al Additives on Reduction of Iron(III) Oxide: In Situ XRD and XANES Study</title><source>ACS Publications</source><creator>Bulavchenko, Olga A ; Vinokurov, Zakhar S ; Saraev, Andrey A ; Tsapina, Anna M ; Trigub, Alexander L ; Gerasimov, Evgeny Yu ; Gladky, Alexey Yu ; Fedorov, Alexander V ; Yakovlev, Vadim A ; Kaichev, Vasily V</creator><creatorcontrib>Bulavchenko, Olga A ; Vinokurov, Zakhar S ; Saraev, Andrey A ; Tsapina, Anna M ; Trigub, Alexander L ; Gerasimov, Evgeny Yu ; Gladky, Alexey Yu ; Fedorov, Alexander V ; Yakovlev, Vadim A ; Kaichev, Vasily V</creatorcontrib><description>The reduction of Fe-based nanocomposite catalysts doped with Al and Cu has been studied using in situ X-ray diffraction (XRD), in situ X-ray absorption near-edge structure (XANES), and temperature-programmed reduction (TPR) techniques. The catalysts have been synthesized by melting of iron, aluminum, and copper salts. According to XRD, the catalysts consist mainly of Fe2O3 and Al2O3 phases. Alumina is in an amorphous state, whereas iron oxide forms nanoparticles with the protohematite structure. The Al3+ cations are partially dissolved in the Fe2O3 lattice. Due to strong alumina–iron oxide interaction, the specific surface area of the catalysts increases significantly. TPR and XANES data indicate that copper forms highly dispersed surface CuO nanoparticles and partially dissolves in iron oxide. It has been shown that the reduction of iron­(III) oxide by CO proceeds via two routes: a direct two-stage reduction of iron­(III) oxide to metal (Fe2O3 → Fe3O4 → Fe) or an indirect three-stage reduction with the formation of FeO intermediate phases (Fe2O3 → Fe3O4 → FeO → Fe). The introduction of Al into Fe2O3 leads to a decrease in the rate for all reduction steps. In addition, the introduction of Al stabilizes small Fe3O4 particles and prevents further sintering of the iron oxide. The mechanism of stabilization is associated with the formation of Fe3–x Al x O4 solid solution. The addition of copper to the Fe–Al catalyst leads to the formation of highly dispersed CuO particles on the catalyst surface and a mixed oxide with a spinel-type crystalline structure similar to that of CuFe2O4. The low-temperature reduction of Cu2+ to Cu0 accelerates the Fe2O3 → Fe3O4 and FeO → Fe transformations but does not affect the Fe3O4 → FeO/Fe stages. These changes in the reduction properties significantly affect the catalytic performance of the Fe-based nanocomposite catalysts in the low-temperature oxidation of CO.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.8b03403</identifier><identifier>PMID: 30946575</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Inorganic chemistry, 2019-04, Vol.58 (8), p.4842-4850</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a421t-937ca6d182f2060ad1f256d9db4e40b2322f5ff2dd18ee81b3c679f3ea9c51393</citedby><cites>FETCH-LOGICAL-a421t-937ca6d182f2060ad1f256d9db4e40b2322f5ff2dd18ee81b3c679f3ea9c51393</cites><orcidid>0000-0002-2737-098X ; 0000-0001-9610-9921 ; 0000-0001-5944-2629 ; 0000-0002-2952-6669 ; 0000-0002-1516-2817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.8b03403$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.8b03403$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30946575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bulavchenko, Olga A</creatorcontrib><creatorcontrib>Vinokurov, Zakhar S</creatorcontrib><creatorcontrib>Saraev, Andrey A</creatorcontrib><creatorcontrib>Tsapina, Anna M</creatorcontrib><creatorcontrib>Trigub, Alexander L</creatorcontrib><creatorcontrib>Gerasimov, Evgeny Yu</creatorcontrib><creatorcontrib>Gladky, Alexey Yu</creatorcontrib><creatorcontrib>Fedorov, Alexander V</creatorcontrib><creatorcontrib>Yakovlev, Vadim A</creatorcontrib><creatorcontrib>Kaichev, Vasily V</creatorcontrib><title>The Influence of Cu and Al Additives on Reduction of Iron(III) Oxide: In Situ XRD and XANES Study</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>The reduction of Fe-based nanocomposite catalysts doped with Al and Cu has been studied using in situ X-ray diffraction (XRD), in situ X-ray absorption near-edge structure (XANES), and temperature-programmed reduction (TPR) techniques. The catalysts have been synthesized by melting of iron, aluminum, and copper salts. According to XRD, the catalysts consist mainly of Fe2O3 and Al2O3 phases. Alumina is in an amorphous state, whereas iron oxide forms nanoparticles with the protohematite structure. The Al3+ cations are partially dissolved in the Fe2O3 lattice. Due to strong alumina–iron oxide interaction, the specific surface area of the catalysts increases significantly. TPR and XANES data indicate that copper forms highly dispersed surface CuO nanoparticles and partially dissolves in iron oxide. It has been shown that the reduction of iron­(III) oxide by CO proceeds via two routes: a direct two-stage reduction of iron­(III) oxide to metal (Fe2O3 → Fe3O4 → Fe) or an indirect three-stage reduction with the formation of FeO intermediate phases (Fe2O3 → Fe3O4 → FeO → Fe). The introduction of Al into Fe2O3 leads to a decrease in the rate for all reduction steps. In addition, the introduction of Al stabilizes small Fe3O4 particles and prevents further sintering of the iron oxide. The mechanism of stabilization is associated with the formation of Fe3–x Al x O4 solid solution. The addition of copper to the Fe–Al catalyst leads to the formation of highly dispersed CuO particles on the catalyst surface and a mixed oxide with a spinel-type crystalline structure similar to that of CuFe2O4. The low-temperature reduction of Cu2+ to Cu0 accelerates the Fe2O3 → Fe3O4 and FeO → Fe transformations but does not affect the Fe3O4 → FeO/Fe stages. These changes in the reduction properties significantly affect the catalytic performance of the Fe-based nanocomposite catalysts in the low-temperature oxidation of CO.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EgvL4BJCXsGgZ24nTsKtKgUiISi1I3UWOPYZUaVLiGNG_x9DCltXM4tw7mkPIOYMBA86ulXaDsm7aV_2Gq8GwABGB2CM9FnPoxwwW-6QHEHYmZXpEjp1bAkAqInlIjgSkkYyTuEfU8xvSrLaVx1ojbSwde6pqQ0cVHRlTduUHOtrUdIbG664MW2Cytqkvsyy7otPP0uBNaKDzsvN0Mbv9SS9GT5M5nXfebE7JgVWVw7PdPCEvd5Pn8UP_cXqfjUePfRVx1vVTkWglDRtyy0GCMszyWJrUFBFGUHDBuY2t5SYgiENWCC2T1ApUqY6ZSMUJudz2rtvm3aPr8lXpNFaVqrHxLuccIjlMEskCGm9R3TbOtWjzdVuuVLvJGeTfdvNgN_-zm-_shtzF7oQvVmj-Ur86A8C2wHd-2fi2Dh__U_oFUWCH1g</recordid><startdate>20190415</startdate><enddate>20190415</enddate><creator>Bulavchenko, Olga A</creator><creator>Vinokurov, Zakhar S</creator><creator>Saraev, Andrey A</creator><creator>Tsapina, Anna M</creator><creator>Trigub, Alexander L</creator><creator>Gerasimov, Evgeny Yu</creator><creator>Gladky, Alexey Yu</creator><creator>Fedorov, Alexander V</creator><creator>Yakovlev, Vadim A</creator><creator>Kaichev, Vasily V</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2737-098X</orcidid><orcidid>https://orcid.org/0000-0001-9610-9921</orcidid><orcidid>https://orcid.org/0000-0001-5944-2629</orcidid><orcidid>https://orcid.org/0000-0002-2952-6669</orcidid><orcidid>https://orcid.org/0000-0002-1516-2817</orcidid></search><sort><creationdate>20190415</creationdate><title>The Influence of Cu and Al Additives on Reduction of Iron(III) Oxide: In Situ XRD and XANES Study</title><author>Bulavchenko, Olga A ; Vinokurov, Zakhar S ; Saraev, Andrey A ; Tsapina, Anna M ; Trigub, Alexander L ; Gerasimov, Evgeny Yu ; Gladky, Alexey Yu ; Fedorov, Alexander V ; Yakovlev, Vadim A ; Kaichev, Vasily V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a421t-937ca6d182f2060ad1f256d9db4e40b2322f5ff2dd18ee81b3c679f3ea9c51393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bulavchenko, Olga A</creatorcontrib><creatorcontrib>Vinokurov, Zakhar S</creatorcontrib><creatorcontrib>Saraev, Andrey A</creatorcontrib><creatorcontrib>Tsapina, Anna M</creatorcontrib><creatorcontrib>Trigub, Alexander L</creatorcontrib><creatorcontrib>Gerasimov, Evgeny Yu</creatorcontrib><creatorcontrib>Gladky, Alexey Yu</creatorcontrib><creatorcontrib>Fedorov, Alexander V</creatorcontrib><creatorcontrib>Yakovlev, Vadim A</creatorcontrib><creatorcontrib>Kaichev, Vasily V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bulavchenko, Olga A</au><au>Vinokurov, Zakhar S</au><au>Saraev, Andrey A</au><au>Tsapina, Anna M</au><au>Trigub, Alexander L</au><au>Gerasimov, Evgeny Yu</au><au>Gladky, Alexey Yu</au><au>Fedorov, Alexander V</au><au>Yakovlev, Vadim A</au><au>Kaichev, Vasily V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Influence of Cu and Al Additives on Reduction of Iron(III) Oxide: In Situ XRD and XANES Study</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2019-04-15</date><risdate>2019</risdate><volume>58</volume><issue>8</issue><spage>4842</spage><epage>4850</epage><pages>4842-4850</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>The reduction of Fe-based nanocomposite catalysts doped with Al and Cu has been studied using in situ X-ray diffraction (XRD), in situ X-ray absorption near-edge structure (XANES), and temperature-programmed reduction (TPR) techniques. The catalysts have been synthesized by melting of iron, aluminum, and copper salts. According to XRD, the catalysts consist mainly of Fe2O3 and Al2O3 phases. Alumina is in an amorphous state, whereas iron oxide forms nanoparticles with the protohematite structure. The Al3+ cations are partially dissolved in the Fe2O3 lattice. Due to strong alumina–iron oxide interaction, the specific surface area of the catalysts increases significantly. TPR and XANES data indicate that copper forms highly dispersed surface CuO nanoparticles and partially dissolves in iron oxide. It has been shown that the reduction of iron­(III) oxide by CO proceeds via two routes: a direct two-stage reduction of iron­(III) oxide to metal (Fe2O3 → Fe3O4 → Fe) or an indirect three-stage reduction with the formation of FeO intermediate phases (Fe2O3 → Fe3O4 → FeO → Fe). The introduction of Al into Fe2O3 leads to a decrease in the rate for all reduction steps. In addition, the introduction of Al stabilizes small Fe3O4 particles and prevents further sintering of the iron oxide. The mechanism of stabilization is associated with the formation of Fe3–x Al x O4 solid solution. The addition of copper to the Fe–Al catalyst leads to the formation of highly dispersed CuO particles on the catalyst surface and a mixed oxide with a spinel-type crystalline structure similar to that of CuFe2O4. The low-temperature reduction of Cu2+ to Cu0 accelerates the Fe2O3 → Fe3O4 and FeO → Fe transformations but does not affect the Fe3O4 → FeO/Fe stages. These changes in the reduction properties significantly affect the catalytic performance of the Fe-based nanocomposite catalysts in the low-temperature oxidation of CO.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30946575</pmid><doi>10.1021/acs.inorgchem.8b03403</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2737-098X</orcidid><orcidid>https://orcid.org/0000-0001-9610-9921</orcidid><orcidid>https://orcid.org/0000-0001-5944-2629</orcidid><orcidid>https://orcid.org/0000-0002-2952-6669</orcidid><orcidid>https://orcid.org/0000-0002-1516-2817</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2019-04, Vol.58 (8), p.4842-4850
issn 0020-1669
1520-510X
language eng
recordid cdi_proquest_miscellaneous_2204687761
source ACS Publications
title The Influence of Cu and Al Additives on Reduction of Iron(III) Oxide: In Situ XRD and XANES Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Influence%20of%20Cu%20and%20Al%20Additives%20on%20Reduction%20of%20Iron(III)%20Oxide:%20In%20Situ%20XRD%20and%20XANES%20Study&rft.jtitle=Inorganic%20chemistry&rft.au=Bulavchenko,%20Olga%20A&rft.date=2019-04-15&rft.volume=58&rft.issue=8&rft.spage=4842&rft.epage=4850&rft.pages=4842-4850&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.8b03403&rft_dat=%3Cproquest_cross%3E2204687761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2204687761&rft_id=info:pmid/30946575&rfr_iscdi=true