Photo-Fenton degradation of amoxicillin via magnetic TiO2-graphene oxide-Fe3O4 composite with a submerged magnetic separation membrane photocatalytic reactor (SMSMPR)

[Display omitted] •The GO nanosheet as an intermediate facilitates the growth of both Fe3O4 and TiO2 on its surface.•TiO2-GO-Fe3O4 composite shows high photo-Fenton catalytic activity and magnetic recovery property.•The combination of SMSMPR and TiO2-GO-Fe3O4 realized the recovery of the catalysts.•...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2019-07, Vol.373, p.437-446
Hauptverfasser: Li, Qilong, Kong, Hui, Li, Peng, Shao, Jiahui, He, Yiliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 446
container_issue
container_start_page 437
container_title Journal of hazardous materials
container_volume 373
creator Li, Qilong
Kong, Hui
Li, Peng
Shao, Jiahui
He, Yiliang
description [Display omitted] •The GO nanosheet as an intermediate facilitates the growth of both Fe3O4 and TiO2 on its surface.•TiO2-GO-Fe3O4 composite shows high photo-Fenton catalytic activity and magnetic recovery property.•The combination of SMSMPR and TiO2-GO-Fe3O4 realized the recovery of the catalysts.•Backwashing treatment and magnetic separation promote the catalytic activity and durability. The photo-Fenton process is one of the most important advanced oxidation technologies in environmental remediation. However, the poor recovery of catalysts from treated water impedes the commercialization of this process. Herein, we propose a novel approach for the preparation of TiO2-graphene oxide (GO)-Fe3O4 with high photo-Fenton catalytic performance and capability of magnetic recovery. To realize the recovery of the catalysts, the combination of a submerged magnetic separation membrane photocatalytic reactor (SMSMPR) and TiO2-GO-Fe3O4 was applied to degrade the refractory antibiotic organic compounds in aqueous solution. The results indicate that GO can induce better cycle and catalytic performance of the catalysts. Fe3O4 can not only enhance the heterogeneous Fenton degradation of organic compounds but also provide magnetism of the photocatalyst for magnetic separation from treated water. As a result, the TiO2-GO-Fe3O4 composite in the SMSMPR exhibits excellent photo-Fenton catalytic performance and stability for amoxicillin (AMX) degradation. Both backwashing treatment and magnetic separation in the SMSMPR could enhance the photo-Fenton catalytic activity, durability, and separation properties, promoting practical application of this approach for wastewater treatment. Two possible pathways for AMX photodegradation in the SMSMPR were analyzed by means of a Q-TOF LC/MS system, with most of the intermediates finally mineralized to CO2, water and inorganic ions.
doi_str_mv 10.1016/j.jhazmat.2019.03.066
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2202666209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389419303401</els_id><sourcerecordid>2202666209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-3ae9efebec209890f7eb6e628f77e191fa24bab12ce5886e838fafdcebc79b123</originalsourceid><addsrcrecordid>eNqFkc1u1DAURi0EEkPhEZC8LIuk_sk4yQqhigJSq6loWVs3zvWMR3EcbE-hPBDPiUdTqUtWtqzzHd-rj5D3nNWccXWxr_c7-OMh14LxvmayZkq9ICvetbKSUqqXZMUkayrZ9c1r8ialPWOMt-tmRf7e7kIO1RXOOcx0xG2EEbIr92Ap-PDbGTdNbqYPDqiH7YzZGXrvNqIq6LLDGWmBRiwKuWmoCX4JyWWkv1zeUaDpMHiMWxyf0wkXiKdPPPohQnEsxzEMZJgej0hEMDlEen53c3dz-_3DW_LKwpTw3dN5Rn5cfb6__Fpdb758u_x0XRnZ9rmSgD1aHNAI1nc9sy0OCpXobNsi77kF0QwwcGFw3XUKO9lZsKPBwbR9eZZn5PzkXWL4ecCUtXfJ4DSVGcMhaSGYUEoVe0HXJ9TEkFJEq5foPMRHzZk-9qL3-qkXfexFM6lLLyX38ZTDsseDw6iTcTgbHF1Ek_UY3H8M_wD6N53v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202666209</pqid></control><display><type>article</type><title>Photo-Fenton degradation of amoxicillin via magnetic TiO2-graphene oxide-Fe3O4 composite with a submerged magnetic separation membrane photocatalytic reactor (SMSMPR)</title><source>Elsevier ScienceDirect Journals</source><creator>Li, Qilong ; Kong, Hui ; Li, Peng ; Shao, Jiahui ; He, Yiliang</creator><creatorcontrib>Li, Qilong ; Kong, Hui ; Li, Peng ; Shao, Jiahui ; He, Yiliang</creatorcontrib><description>[Display omitted] •The GO nanosheet as an intermediate facilitates the growth of both Fe3O4 and TiO2 on its surface.•TiO2-GO-Fe3O4 composite shows high photo-Fenton catalytic activity and magnetic recovery property.•The combination of SMSMPR and TiO2-GO-Fe3O4 realized the recovery of the catalysts.•Backwashing treatment and magnetic separation promote the catalytic activity and durability. The photo-Fenton process is one of the most important advanced oxidation technologies in environmental remediation. However, the poor recovery of catalysts from treated water impedes the commercialization of this process. Herein, we propose a novel approach for the preparation of TiO2-graphene oxide (GO)-Fe3O4 with high photo-Fenton catalytic performance and capability of magnetic recovery. To realize the recovery of the catalysts, the combination of a submerged magnetic separation membrane photocatalytic reactor (SMSMPR) and TiO2-GO-Fe3O4 was applied to degrade the refractory antibiotic organic compounds in aqueous solution. The results indicate that GO can induce better cycle and catalytic performance of the catalysts. Fe3O4 can not only enhance the heterogeneous Fenton degradation of organic compounds but also provide magnetism of the photocatalyst for magnetic separation from treated water. As a result, the TiO2-GO-Fe3O4 composite in the SMSMPR exhibits excellent photo-Fenton catalytic performance and stability for amoxicillin (AMX) degradation. Both backwashing treatment and magnetic separation in the SMSMPR could enhance the photo-Fenton catalytic activity, durability, and separation properties, promoting practical application of this approach for wastewater treatment. Two possible pathways for AMX photodegradation in the SMSMPR were analyzed by means of a Q-TOF LC/MS system, with most of the intermediates finally mineralized to CO2, water and inorganic ions.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2019.03.066</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Magnetic separation ; Photo-Fenton ; Submerged membrane reactor ; TiO2-graphene oxide-Fe3O4</subject><ispartof>Journal of hazardous materials, 2019-07, Vol.373, p.437-446</ispartof><rights>2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-3ae9efebec209890f7eb6e628f77e191fa24bab12ce5886e838fafdcebc79b123</citedby><cites>FETCH-LOGICAL-c379t-3ae9efebec209890f7eb6e628f77e191fa24bab12ce5886e838fafdcebc79b123</cites><orcidid>0000-0002-8881-4089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhazmat.2019.03.066$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Li, Qilong</creatorcontrib><creatorcontrib>Kong, Hui</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Shao, Jiahui</creatorcontrib><creatorcontrib>He, Yiliang</creatorcontrib><title>Photo-Fenton degradation of amoxicillin via magnetic TiO2-graphene oxide-Fe3O4 composite with a submerged magnetic separation membrane photocatalytic reactor (SMSMPR)</title><title>Journal of hazardous materials</title><description>[Display omitted] •The GO nanosheet as an intermediate facilitates the growth of both Fe3O4 and TiO2 on its surface.•TiO2-GO-Fe3O4 composite shows high photo-Fenton catalytic activity and magnetic recovery property.•The combination of SMSMPR and TiO2-GO-Fe3O4 realized the recovery of the catalysts.•Backwashing treatment and magnetic separation promote the catalytic activity and durability. The photo-Fenton process is one of the most important advanced oxidation technologies in environmental remediation. However, the poor recovery of catalysts from treated water impedes the commercialization of this process. Herein, we propose a novel approach for the preparation of TiO2-graphene oxide (GO)-Fe3O4 with high photo-Fenton catalytic performance and capability of magnetic recovery. To realize the recovery of the catalysts, the combination of a submerged magnetic separation membrane photocatalytic reactor (SMSMPR) and TiO2-GO-Fe3O4 was applied to degrade the refractory antibiotic organic compounds in aqueous solution. The results indicate that GO can induce better cycle and catalytic performance of the catalysts. Fe3O4 can not only enhance the heterogeneous Fenton degradation of organic compounds but also provide magnetism of the photocatalyst for magnetic separation from treated water. As a result, the TiO2-GO-Fe3O4 composite in the SMSMPR exhibits excellent photo-Fenton catalytic performance and stability for amoxicillin (AMX) degradation. Both backwashing treatment and magnetic separation in the SMSMPR could enhance the photo-Fenton catalytic activity, durability, and separation properties, promoting practical application of this approach for wastewater treatment. Two possible pathways for AMX photodegradation in the SMSMPR were analyzed by means of a Q-TOF LC/MS system, with most of the intermediates finally mineralized to CO2, water and inorganic ions.</description><subject>Magnetic separation</subject><subject>Photo-Fenton</subject><subject>Submerged membrane reactor</subject><subject>TiO2-graphene oxide-Fe3O4</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAURi0EEkPhEZC8LIuk_sk4yQqhigJSq6loWVs3zvWMR3EcbE-hPBDPiUdTqUtWtqzzHd-rj5D3nNWccXWxr_c7-OMh14LxvmayZkq9ICvetbKSUqqXZMUkayrZ9c1r8ialPWOMt-tmRf7e7kIO1RXOOcx0xG2EEbIr92Ap-PDbGTdNbqYPDqiH7YzZGXrvNqIq6LLDGWmBRiwKuWmoCX4JyWWkv1zeUaDpMHiMWxyf0wkXiKdPPPohQnEsxzEMZJgej0hEMDlEen53c3dz-_3DW_LKwpTw3dN5Rn5cfb6__Fpdb758u_x0XRnZ9rmSgD1aHNAI1nc9sy0OCpXobNsi77kF0QwwcGFw3XUKO9lZsKPBwbR9eZZn5PzkXWL4ecCUtXfJ4DSVGcMhaSGYUEoVe0HXJ9TEkFJEq5foPMRHzZk-9qL3-qkXfexFM6lLLyX38ZTDsseDw6iTcTgbHF1Ek_UY3H8M_wD6N53v</recordid><startdate>20190705</startdate><enddate>20190705</enddate><creator>Li, Qilong</creator><creator>Kong, Hui</creator><creator>Li, Peng</creator><creator>Shao, Jiahui</creator><creator>He, Yiliang</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8881-4089</orcidid></search><sort><creationdate>20190705</creationdate><title>Photo-Fenton degradation of amoxicillin via magnetic TiO2-graphene oxide-Fe3O4 composite with a submerged magnetic separation membrane photocatalytic reactor (SMSMPR)</title><author>Li, Qilong ; Kong, Hui ; Li, Peng ; Shao, Jiahui ; He, Yiliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-3ae9efebec209890f7eb6e628f77e191fa24bab12ce5886e838fafdcebc79b123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Magnetic separation</topic><topic>Photo-Fenton</topic><topic>Submerged membrane reactor</topic><topic>TiO2-graphene oxide-Fe3O4</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qilong</creatorcontrib><creatorcontrib>Kong, Hui</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Shao, Jiahui</creatorcontrib><creatorcontrib>He, Yiliang</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qilong</au><au>Kong, Hui</au><au>Li, Peng</au><au>Shao, Jiahui</au><au>He, Yiliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photo-Fenton degradation of amoxicillin via magnetic TiO2-graphene oxide-Fe3O4 composite with a submerged magnetic separation membrane photocatalytic reactor (SMSMPR)</atitle><jtitle>Journal of hazardous materials</jtitle><date>2019-07-05</date><risdate>2019</risdate><volume>373</volume><spage>437</spage><epage>446</epage><pages>437-446</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><abstract>[Display omitted] •The GO nanosheet as an intermediate facilitates the growth of both Fe3O4 and TiO2 on its surface.•TiO2-GO-Fe3O4 composite shows high photo-Fenton catalytic activity and magnetic recovery property.•The combination of SMSMPR and TiO2-GO-Fe3O4 realized the recovery of the catalysts.•Backwashing treatment and magnetic separation promote the catalytic activity and durability. The photo-Fenton process is one of the most important advanced oxidation technologies in environmental remediation. However, the poor recovery of catalysts from treated water impedes the commercialization of this process. Herein, we propose a novel approach for the preparation of TiO2-graphene oxide (GO)-Fe3O4 with high photo-Fenton catalytic performance and capability of magnetic recovery. To realize the recovery of the catalysts, the combination of a submerged magnetic separation membrane photocatalytic reactor (SMSMPR) and TiO2-GO-Fe3O4 was applied to degrade the refractory antibiotic organic compounds in aqueous solution. The results indicate that GO can induce better cycle and catalytic performance of the catalysts. Fe3O4 can not only enhance the heterogeneous Fenton degradation of organic compounds but also provide magnetism of the photocatalyst for magnetic separation from treated water. As a result, the TiO2-GO-Fe3O4 composite in the SMSMPR exhibits excellent photo-Fenton catalytic performance and stability for amoxicillin (AMX) degradation. Both backwashing treatment and magnetic separation in the SMSMPR could enhance the photo-Fenton catalytic activity, durability, and separation properties, promoting practical application of this approach for wastewater treatment. Two possible pathways for AMX photodegradation in the SMSMPR were analyzed by means of a Q-TOF LC/MS system, with most of the intermediates finally mineralized to CO2, water and inorganic ions.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jhazmat.2019.03.066</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8881-4089</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2019-07, Vol.373, p.437-446
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_2202666209
source Elsevier ScienceDirect Journals
subjects Magnetic separation
Photo-Fenton
Submerged membrane reactor
TiO2-graphene oxide-Fe3O4
title Photo-Fenton degradation of amoxicillin via magnetic TiO2-graphene oxide-Fe3O4 composite with a submerged magnetic separation membrane photocatalytic reactor (SMSMPR)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photo-Fenton%20degradation%20of%20amoxicillin%20via%20magnetic%20TiO2-graphene%20oxide-Fe3O4%20composite%20with%20a%20submerged%20magnetic%20separation%20membrane%20photocatalytic%20reactor%20(SMSMPR)&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Li,%20Qilong&rft.date=2019-07-05&rft.volume=373&rft.spage=437&rft.epage=446&rft.pages=437-446&rft.issn=0304-3894&rft.eissn=1873-3336&rft_id=info:doi/10.1016/j.jhazmat.2019.03.066&rft_dat=%3Cproquest_cross%3E2202666209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202666209&rft_id=info:pmid/&rft_els_id=S0304389419303401&rfr_iscdi=true