Developing structural profile matrices for protein secondary structure and solvent accessibility prediction
Abstract Motivation Predicting secondary structure and solvent accessibility of proteins are among the essential steps that preclude more elaborate 3D structure prediction tasks. Incorporating class label information contained in templates with known structures has the potential to improve the accur...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2019-10, Vol.35 (20), p.4004-4010 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4010 |
---|---|
container_issue | 20 |
container_start_page | 4004 |
container_title | Bioinformatics |
container_volume | 35 |
creator | Aydin, Zafer Azginoglu, Nuh Bilgin, Halil Ibrahim Celik, Mete |
description | Abstract
Motivation
Predicting secondary structure and solvent accessibility of proteins are among the essential steps that preclude more elaborate 3D structure prediction tasks. Incorporating class label information contained in templates with known structures has the potential to improve the accuracy of prediction methods. Building a structural profile matrix is one such technique that provides a distribution for class labels at each amino acid position of the target.
Results
In this paper, a new structural profiling technique is proposed that is based on deriving PFAM families and is combined with an existing approach. Cross-validation experiments on two benchmark datasets and at various similarity intervals demonstrate that the proposed profiling strategy performs significantly better than Homolpro, a state-of-the-art method for incorporating template information, as assessed by statistical hypothesis tests.
Availability and implementation
The DSPRED method can be accessed by visiting the PSP server at http://psp.agu.edu.tr. Source code and binaries are freely available at https://github.com/yusufzaferaydin/dspred.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btz238 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2202204486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btz238</oup_id><sourcerecordid>2202204486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-8f0f81616c9645418fdc29b14616815d45c16f59c1da1bae9cf61d04d95d111a3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMotlZ_grJHL2szu0m6e5T6CQUvel6y-ZDoblKTbKH-elO2FrwJAxnC-7wz8yJ0CfgGcF3OW-OM1c73PBoR5m38LsrqCE2BMJwXmNbHqS_ZIicVLifoLIQPjCkQQk7RpEwOC1LSKfq8UxvVubWx71mIfhBx8LzL1t5p06ksuXsjVMjSpN1nVMZmQQlnJffbA6EybmUWXLdRNmZcJCKY1nQmbhOlpBHROHuOTjTvgrrYvzP09nD_unzKVy-Pz8vbVS5KimNeaawrYMBEzQglUGkpirpNhwGrgEpCBTBNawGSQ8tVLTQDiYmsqQQAXs7Q9eibFv4aVIhNb4JQXcetckNoigKnIqRiSUpHqfAuBK90s_amT6c1gJtdzs3fnJsx58Rd7UcMba_kgfoNNgnwKHDD-p-eP2U-k1o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202204486</pqid></control><display><type>article</type><title>Developing structural profile matrices for protein secondary structure and solvent accessibility prediction</title><source>Oxford Journals Open Access Collection</source><creator>Aydin, Zafer ; Azginoglu, Nuh ; Bilgin, Halil Ibrahim ; Celik, Mete</creator><creatorcontrib>Aydin, Zafer ; Azginoglu, Nuh ; Bilgin, Halil Ibrahim ; Celik, Mete</creatorcontrib><description>Abstract
Motivation
Predicting secondary structure and solvent accessibility of proteins are among the essential steps that preclude more elaborate 3D structure prediction tasks. Incorporating class label information contained in templates with known structures has the potential to improve the accuracy of prediction methods. Building a structural profile matrix is one such technique that provides a distribution for class labels at each amino acid position of the target.
Results
In this paper, a new structural profiling technique is proposed that is based on deriving PFAM families and is combined with an existing approach. Cross-validation experiments on two benchmark datasets and at various similarity intervals demonstrate that the proposed profiling strategy performs significantly better than Homolpro, a state-of-the-art method for incorporating template information, as assessed by statistical hypothesis tests.
Availability and implementation
The DSPRED method can be accessed by visiting the PSP server at http://psp.agu.edu.tr. Source code and binaries are freely available at https://github.com/yusufzaferaydin/dspred.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btz238</identifier><identifier>PMID: 30937435</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Bioinformatics, 2019-10, Vol.35 (20), p.4004-4010</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019</rights><rights>The Author(s) (2019). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-8f0f81616c9645418fdc29b14616815d45c16f59c1da1bae9cf61d04d95d111a3</citedby><cites>FETCH-LOGICAL-c350t-8f0f81616c9645418fdc29b14616815d45c16f59c1da1bae9cf61d04d95d111a3</cites><orcidid>0000-0001-7686-6298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btz238$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30937435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aydin, Zafer</creatorcontrib><creatorcontrib>Azginoglu, Nuh</creatorcontrib><creatorcontrib>Bilgin, Halil Ibrahim</creatorcontrib><creatorcontrib>Celik, Mete</creatorcontrib><title>Developing structural profile matrices for protein secondary structure and solvent accessibility prediction</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Predicting secondary structure and solvent accessibility of proteins are among the essential steps that preclude more elaborate 3D structure prediction tasks. Incorporating class label information contained in templates with known structures has the potential to improve the accuracy of prediction methods. Building a structural profile matrix is one such technique that provides a distribution for class labels at each amino acid position of the target.
Results
In this paper, a new structural profiling technique is proposed that is based on deriving PFAM families and is combined with an existing approach. Cross-validation experiments on two benchmark datasets and at various similarity intervals demonstrate that the proposed profiling strategy performs significantly better than Homolpro, a state-of-the-art method for incorporating template information, as assessed by statistical hypothesis tests.
Availability and implementation
The DSPRED method can be accessed by visiting the PSP server at http://psp.agu.edu.tr. Source code and binaries are freely available at https://github.com/yusufzaferaydin/dspred.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMotlZ_grJHL2szu0m6e5T6CQUvel6y-ZDoblKTbKH-elO2FrwJAxnC-7wz8yJ0CfgGcF3OW-OM1c73PBoR5m38LsrqCE2BMJwXmNbHqS_ZIicVLifoLIQPjCkQQk7RpEwOC1LSKfq8UxvVubWx71mIfhBx8LzL1t5p06ksuXsjVMjSpN1nVMZmQQlnJffbA6EybmUWXLdRNmZcJCKY1nQmbhOlpBHROHuOTjTvgrrYvzP09nD_unzKVy-Pz8vbVS5KimNeaawrYMBEzQglUGkpirpNhwGrgEpCBTBNawGSQ8tVLTQDiYmsqQQAXs7Q9eibFv4aVIhNb4JQXcetckNoigKnIqRiSUpHqfAuBK90s_amT6c1gJtdzs3fnJsx58Rd7UcMba_kgfoNNgnwKHDD-p-eP2U-k1o</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Aydin, Zafer</creator><creator>Azginoglu, Nuh</creator><creator>Bilgin, Halil Ibrahim</creator><creator>Celik, Mete</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7686-6298</orcidid></search><sort><creationdate>20191015</creationdate><title>Developing structural profile matrices for protein secondary structure and solvent accessibility prediction</title><author>Aydin, Zafer ; Azginoglu, Nuh ; Bilgin, Halil Ibrahim ; Celik, Mete</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-8f0f81616c9645418fdc29b14616815d45c16f59c1da1bae9cf61d04d95d111a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aydin, Zafer</creatorcontrib><creatorcontrib>Azginoglu, Nuh</creatorcontrib><creatorcontrib>Bilgin, Halil Ibrahim</creatorcontrib><creatorcontrib>Celik, Mete</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aydin, Zafer</au><au>Azginoglu, Nuh</au><au>Bilgin, Halil Ibrahim</au><au>Celik, Mete</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing structural profile matrices for protein secondary structure and solvent accessibility prediction</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2019-10-15</date><risdate>2019</risdate><volume>35</volume><issue>20</issue><spage>4004</spage><epage>4010</epage><pages>4004-4010</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Predicting secondary structure and solvent accessibility of proteins are among the essential steps that preclude more elaborate 3D structure prediction tasks. Incorporating class label information contained in templates with known structures has the potential to improve the accuracy of prediction methods. Building a structural profile matrix is one such technique that provides a distribution for class labels at each amino acid position of the target.
Results
In this paper, a new structural profiling technique is proposed that is based on deriving PFAM families and is combined with an existing approach. Cross-validation experiments on two benchmark datasets and at various similarity intervals demonstrate that the proposed profiling strategy performs significantly better than Homolpro, a state-of-the-art method for incorporating template information, as assessed by statistical hypothesis tests.
Availability and implementation
The DSPRED method can be accessed by visiting the PSP server at http://psp.agu.edu.tr. Source code and binaries are freely available at https://github.com/yusufzaferaydin/dspred.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30937435</pmid><doi>10.1093/bioinformatics/btz238</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7686-6298</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2019-10, Vol.35 (20), p.4004-4010 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_2202204486 |
source | Oxford Journals Open Access Collection |
title | Developing structural profile matrices for protein secondary structure and solvent accessibility prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20structural%20profile%20matrices%20for%20protein%20secondary%20structure%20and%20solvent%20accessibility%20prediction&rft.jtitle=Bioinformatics&rft.au=Aydin,%20Zafer&rft.date=2019-10-15&rft.volume=35&rft.issue=20&rft.spage=4004&rft.epage=4010&rft.pages=4004-4010&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btz238&rft_dat=%3Cproquest_TOX%3E2202204486%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202204486&rft_id=info:pmid/30937435&rft_oup_id=10.1093/bioinformatics/btz238&rfr_iscdi=true |