Developing structural profile matrices for protein secondary structure and solvent accessibility prediction

Abstract Motivation Predicting secondary structure and solvent accessibility of proteins are among the essential steps that preclude more elaborate 3D structure prediction tasks. Incorporating class label information contained in templates with known structures has the potential to improve the accur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2019-10, Vol.35 (20), p.4004-4010
Hauptverfasser: Aydin, Zafer, Azginoglu, Nuh, Bilgin, Halil Ibrahim, Celik, Mete
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4010
container_issue 20
container_start_page 4004
container_title Bioinformatics
container_volume 35
creator Aydin, Zafer
Azginoglu, Nuh
Bilgin, Halil Ibrahim
Celik, Mete
description Abstract Motivation Predicting secondary structure and solvent accessibility of proteins are among the essential steps that preclude more elaborate 3D structure prediction tasks. Incorporating class label information contained in templates with known structures has the potential to improve the accuracy of prediction methods. Building a structural profile matrix is one such technique that provides a distribution for class labels at each amino acid position of the target. Results In this paper, a new structural profiling technique is proposed that is based on deriving PFAM families and is combined with an existing approach. Cross-validation experiments on two benchmark datasets and at various similarity intervals demonstrate that the proposed profiling strategy performs significantly better than Homolpro, a state-of-the-art method for incorporating template information, as assessed by statistical hypothesis tests. Availability and implementation The DSPRED method can be accessed by visiting the PSP server at http://psp.agu.edu.tr. Source code and binaries are freely available at https://github.com/yusufzaferaydin/dspred. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btz238
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2202204486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btz238</oup_id><sourcerecordid>2202204486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-8f0f81616c9645418fdc29b14616815d45c16f59c1da1bae9cf61d04d95d111a3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMotlZ_grJHL2szu0m6e5T6CQUvel6y-ZDoblKTbKH-elO2FrwJAxnC-7wz8yJ0CfgGcF3OW-OM1c73PBoR5m38LsrqCE2BMJwXmNbHqS_ZIicVLifoLIQPjCkQQk7RpEwOC1LSKfq8UxvVubWx71mIfhBx8LzL1t5p06ksuXsjVMjSpN1nVMZmQQlnJffbA6EybmUWXLdRNmZcJCKY1nQmbhOlpBHROHuOTjTvgrrYvzP09nD_unzKVy-Pz8vbVS5KimNeaawrYMBEzQglUGkpirpNhwGrgEpCBTBNawGSQ8tVLTQDiYmsqQQAXs7Q9eibFv4aVIhNb4JQXcetckNoigKnIqRiSUpHqfAuBK90s_amT6c1gJtdzs3fnJsx58Rd7UcMba_kgfoNNgnwKHDD-p-eP2U-k1o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202204486</pqid></control><display><type>article</type><title>Developing structural profile matrices for protein secondary structure and solvent accessibility prediction</title><source>Oxford Journals Open Access Collection</source><creator>Aydin, Zafer ; Azginoglu, Nuh ; Bilgin, Halil Ibrahim ; Celik, Mete</creator><creatorcontrib>Aydin, Zafer ; Azginoglu, Nuh ; Bilgin, Halil Ibrahim ; Celik, Mete</creatorcontrib><description>Abstract Motivation Predicting secondary structure and solvent accessibility of proteins are among the essential steps that preclude more elaborate 3D structure prediction tasks. Incorporating class label information contained in templates with known structures has the potential to improve the accuracy of prediction methods. Building a structural profile matrix is one such technique that provides a distribution for class labels at each amino acid position of the target. Results In this paper, a new structural profiling technique is proposed that is based on deriving PFAM families and is combined with an existing approach. Cross-validation experiments on two benchmark datasets and at various similarity intervals demonstrate that the proposed profiling strategy performs significantly better than Homolpro, a state-of-the-art method for incorporating template information, as assessed by statistical hypothesis tests. Availability and implementation The DSPRED method can be accessed by visiting the PSP server at http://psp.agu.edu.tr. Source code and binaries are freely available at https://github.com/yusufzaferaydin/dspred. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btz238</identifier><identifier>PMID: 30937435</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Bioinformatics, 2019-10, Vol.35 (20), p.4004-4010</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019</rights><rights>The Author(s) (2019). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-8f0f81616c9645418fdc29b14616815d45c16f59c1da1bae9cf61d04d95d111a3</citedby><cites>FETCH-LOGICAL-c350t-8f0f81616c9645418fdc29b14616815d45c16f59c1da1bae9cf61d04d95d111a3</cites><orcidid>0000-0001-7686-6298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btz238$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30937435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aydin, Zafer</creatorcontrib><creatorcontrib>Azginoglu, Nuh</creatorcontrib><creatorcontrib>Bilgin, Halil Ibrahim</creatorcontrib><creatorcontrib>Celik, Mete</creatorcontrib><title>Developing structural profile matrices for protein secondary structure and solvent accessibility prediction</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Predicting secondary structure and solvent accessibility of proteins are among the essential steps that preclude more elaborate 3D structure prediction tasks. Incorporating class label information contained in templates with known structures has the potential to improve the accuracy of prediction methods. Building a structural profile matrix is one such technique that provides a distribution for class labels at each amino acid position of the target. Results In this paper, a new structural profiling technique is proposed that is based on deriving PFAM families and is combined with an existing approach. Cross-validation experiments on two benchmark datasets and at various similarity intervals demonstrate that the proposed profiling strategy performs significantly better than Homolpro, a state-of-the-art method for incorporating template information, as assessed by statistical hypothesis tests. Availability and implementation The DSPRED method can be accessed by visiting the PSP server at http://psp.agu.edu.tr. Source code and binaries are freely available at https://github.com/yusufzaferaydin/dspred. Supplementary information Supplementary data are available at Bioinformatics online.</description><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMotlZ_grJHL2szu0m6e5T6CQUvel6y-ZDoblKTbKH-elO2FrwJAxnC-7wz8yJ0CfgGcF3OW-OM1c73PBoR5m38LsrqCE2BMJwXmNbHqS_ZIicVLifoLIQPjCkQQk7RpEwOC1LSKfq8UxvVubWx71mIfhBx8LzL1t5p06ksuXsjVMjSpN1nVMZmQQlnJffbA6EybmUWXLdRNmZcJCKY1nQmbhOlpBHROHuOTjTvgrrYvzP09nD_unzKVy-Pz8vbVS5KimNeaawrYMBEzQglUGkpirpNhwGrgEpCBTBNawGSQ8tVLTQDiYmsqQQAXs7Q9eibFv4aVIhNb4JQXcetckNoigKnIqRiSUpHqfAuBK90s_amT6c1gJtdzs3fnJsx58Rd7UcMba_kgfoNNgnwKHDD-p-eP2U-k1o</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Aydin, Zafer</creator><creator>Azginoglu, Nuh</creator><creator>Bilgin, Halil Ibrahim</creator><creator>Celik, Mete</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7686-6298</orcidid></search><sort><creationdate>20191015</creationdate><title>Developing structural profile matrices for protein secondary structure and solvent accessibility prediction</title><author>Aydin, Zafer ; Azginoglu, Nuh ; Bilgin, Halil Ibrahim ; Celik, Mete</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-8f0f81616c9645418fdc29b14616815d45c16f59c1da1bae9cf61d04d95d111a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aydin, Zafer</creatorcontrib><creatorcontrib>Azginoglu, Nuh</creatorcontrib><creatorcontrib>Bilgin, Halil Ibrahim</creatorcontrib><creatorcontrib>Celik, Mete</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aydin, Zafer</au><au>Azginoglu, Nuh</au><au>Bilgin, Halil Ibrahim</au><au>Celik, Mete</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing structural profile matrices for protein secondary structure and solvent accessibility prediction</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2019-10-15</date><risdate>2019</risdate><volume>35</volume><issue>20</issue><spage>4004</spage><epage>4010</epage><pages>4004-4010</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation Predicting secondary structure and solvent accessibility of proteins are among the essential steps that preclude more elaborate 3D structure prediction tasks. Incorporating class label information contained in templates with known structures has the potential to improve the accuracy of prediction methods. Building a structural profile matrix is one such technique that provides a distribution for class labels at each amino acid position of the target. Results In this paper, a new structural profiling technique is proposed that is based on deriving PFAM families and is combined with an existing approach. Cross-validation experiments on two benchmark datasets and at various similarity intervals demonstrate that the proposed profiling strategy performs significantly better than Homolpro, a state-of-the-art method for incorporating template information, as assessed by statistical hypothesis tests. Availability and implementation The DSPRED method can be accessed by visiting the PSP server at http://psp.agu.edu.tr. Source code and binaries are freely available at https://github.com/yusufzaferaydin/dspred. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30937435</pmid><doi>10.1093/bioinformatics/btz238</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7686-6298</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2019-10, Vol.35 (20), p.4004-4010
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_2202204486
source Oxford Journals Open Access Collection
title Developing structural profile matrices for protein secondary structure and solvent accessibility prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20structural%20profile%20matrices%20for%20protein%20secondary%20structure%20and%20solvent%20accessibility%20prediction&rft.jtitle=Bioinformatics&rft.au=Aydin,%20Zafer&rft.date=2019-10-15&rft.volume=35&rft.issue=20&rft.spage=4004&rft.epage=4010&rft.pages=4004-4010&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btz238&rft_dat=%3Cproquest_TOX%3E2202204486%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202204486&rft_id=info:pmid/30937435&rft_oup_id=10.1093/bioinformatics/btz238&rfr_iscdi=true