Development of Simplified in Vitro P‑Glycoprotein Substrate Assay and in Silico Prediction Models To Evaluate Transport Potential of P‑Glycoprotein
For efficient drug discovery and screening, it is necessary to simplify P-glycoprotein (P-gp) substrate assays and to provide in silico models that predict the transport potential of P-gp. In this study, we developed a simplified in vitro screening method to evaluate P-gp substrates by unidirectiona...
Gespeichert in:
Veröffentlicht in: | Molecular pharmaceutics 2019-05, Vol.16 (5), p.1851-1863 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1863 |
---|---|
container_issue | 5 |
container_start_page | 1851 |
container_title | Molecular pharmaceutics |
container_volume | 16 |
creator | Ohashi, Rikiya Watanabe, Reiko Esaki, Tsuyoshi Taniguchi, Tomomi Torimoto-Katori, Nao Watanabe, Tomoko Ogasawara, Yuko Takahashi, Tsuyoshi Tsukimoto, Mikiko Mizuguchi, Kenji |
description | For efficient drug discovery and screening, it is necessary to simplify P-glycoprotein (P-gp) substrate assays and to provide in silico models that predict the transport potential of P-gp. In this study, we developed a simplified in vitro screening method to evaluate P-gp substrates by unidirectional membrane transport in P-gp-overexpressing cells. The unidirectional flux ratio positively correlated with parameters of the conventional bidirectional P-gp substrate assay (R 2 = 0.941) and in vivo K p,brain ratio (mdr1a/1b KO/WT) in mice (R 2 = 0.800). Our in vitro P-gp substrate assay had high reproducibility and required approximately half the labor of the conventional method. We also constructed regression models to predict the value of P-gp-mediated flux and three-class classification models to predict P-gp substrate potential (low-, medium-, and high-potential) using 2397 data entries with the largest data set collected under the same experimental conditions. Most compounds in the test set fell within two- and three-fold errors in the random forest regression model (71.3 and 88.5%, respectively). Furthermore, the random forest three-class classification model showed a high balanced accuracy of 0.821 and precision of 0.761 for the low-potential classes in the test set. We concluded that the simplified in vitro P-gp substrate assay was suitable for compound screening in the early stages of drug discovery and that the in silico regression model and three-class classification model using only chemical structure information could identify the transport potential of compounds including P-gp-mediated flux ratios. Our proposed method is expected to be a practical tool to optimize effective central nervous system (CNS) drugs, to avoid CNS side effects, and to improve intestinal absorption. |
doi_str_mv | 10.1021/acs.molpharmaceut.8b01143 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2202202471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2202202471</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-846685e17598ebb04f19200aa9346611333683e584dff4b6566bdd9b90f4d69a3</originalsourceid><addsrcrecordid>eNqNkd9KwzAYxYMobk5fQeKdN5tJk9bmcsy_oChselvS9itG0qYmqbA7X8Er388nMXVzoFdC4Av5fuccwkHoiJIJJRE9kYWb1Ea3T9LWsoDOT9KcUMrZFhrSmLNxykS0vbmnfID2nHsmJOJxxHbRgBHBWBwlQ_RxBq-gTVtD47Gp8FzVrVaVghKrBj8qbw2-_3x7v9TLwrTWeAjP8y533koPeOqcXGLZfNNzpVURcAulKrwyDb41JWiHFwafv0rd9YqFlY1rjfX4Ppg1Xknd5_7N2Ec7ldQODtZzhB4uzhezq_HN3eX1bHozlpxyP055kqQx0NNYpJDnhFdURIRIKVjYUMoYS1IGccrLquJ5EidJXpYiF6TiZSIkG6HjlW_IfenA-axWrgCtZQOmc1kUkf7wUxpQsUILa5yzUGWtVbW0y4ySrO8lC71kv3rJ1r0E7eE6pstrKDfKnyICEK-A3uPZdLYJv_6H8ReoZKWr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202202471</pqid></control><display><type>article</type><title>Development of Simplified in Vitro P‑Glycoprotein Substrate Assay and in Silico Prediction Models To Evaluate Transport Potential of P‑Glycoprotein</title><source>MEDLINE</source><source>ACS Publications</source><creator>Ohashi, Rikiya ; Watanabe, Reiko ; Esaki, Tsuyoshi ; Taniguchi, Tomomi ; Torimoto-Katori, Nao ; Watanabe, Tomoko ; Ogasawara, Yuko ; Takahashi, Tsuyoshi ; Tsukimoto, Mikiko ; Mizuguchi, Kenji</creator><creatorcontrib>Ohashi, Rikiya ; Watanabe, Reiko ; Esaki, Tsuyoshi ; Taniguchi, Tomomi ; Torimoto-Katori, Nao ; Watanabe, Tomoko ; Ogasawara, Yuko ; Takahashi, Tsuyoshi ; Tsukimoto, Mikiko ; Mizuguchi, Kenji</creatorcontrib><description>For efficient drug discovery and screening, it is necessary to simplify P-glycoprotein (P-gp) substrate assays and to provide in silico models that predict the transport potential of P-gp. In this study, we developed a simplified in vitro screening method to evaluate P-gp substrates by unidirectional membrane transport in P-gp-overexpressing cells. The unidirectional flux ratio positively correlated with parameters of the conventional bidirectional P-gp substrate assay (R 2 = 0.941) and in vivo K p,brain ratio (mdr1a/1b KO/WT) in mice (R 2 = 0.800). Our in vitro P-gp substrate assay had high reproducibility and required approximately half the labor of the conventional method. We also constructed regression models to predict the value of P-gp-mediated flux and three-class classification models to predict P-gp substrate potential (low-, medium-, and high-potential) using 2397 data entries with the largest data set collected under the same experimental conditions. Most compounds in the test set fell within two- and three-fold errors in the random forest regression model (71.3 and 88.5%, respectively). Furthermore, the random forest three-class classification model showed a high balanced accuracy of 0.821 and precision of 0.761 for the low-potential classes in the test set. We concluded that the simplified in vitro P-gp substrate assay was suitable for compound screening in the early stages of drug discovery and that the in silico regression model and three-class classification model using only chemical structure information could identify the transport potential of compounds including P-gp-mediated flux ratios. Our proposed method is expected to be a practical tool to optimize effective central nervous system (CNS) drugs, to avoid CNS side effects, and to improve intestinal absorption.</description><identifier>ISSN: 1543-8384</identifier><identifier>EISSN: 1543-8392</identifier><identifier>DOI: 10.1021/acs.molpharmaceut.8b01143</identifier><identifier>PMID: 30933526</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; ATP Binding Cassette Transporter, Subfamily B - genetics ; ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism ; Biological Availability ; Cell Membrane Permeability - physiology ; Central Nervous System Agents - metabolism ; Computer Simulation ; Data Accuracy ; Drug Discovery - methods ; Drug Evaluation, Preclinical - methods ; Intestinal Absorption - physiology ; LLC-PK1 Cells ; Machine Learning ; Protein Transport - physiology ; Reproducibility of Results ; Swine ; Transfection</subject><ispartof>Molecular pharmaceutics, 2019-05, Vol.16 (5), p.1851-1863</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-846685e17598ebb04f19200aa9346611333683e584dff4b6566bdd9b90f4d69a3</citedby><cites>FETCH-LOGICAL-a414t-846685e17598ebb04f19200aa9346611333683e584dff4b6566bdd9b90f4d69a3</cites><orcidid>0000-0002-6919-5665 ; 0000-0001-9359-8731 ; 0000-0003-3021-7078 ; 0000-0001-8780-6346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.molpharmaceut.8b01143$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.molpharmaceut.8b01143$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30933526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohashi, Rikiya</creatorcontrib><creatorcontrib>Watanabe, Reiko</creatorcontrib><creatorcontrib>Esaki, Tsuyoshi</creatorcontrib><creatorcontrib>Taniguchi, Tomomi</creatorcontrib><creatorcontrib>Torimoto-Katori, Nao</creatorcontrib><creatorcontrib>Watanabe, Tomoko</creatorcontrib><creatorcontrib>Ogasawara, Yuko</creatorcontrib><creatorcontrib>Takahashi, Tsuyoshi</creatorcontrib><creatorcontrib>Tsukimoto, Mikiko</creatorcontrib><creatorcontrib>Mizuguchi, Kenji</creatorcontrib><title>Development of Simplified in Vitro P‑Glycoprotein Substrate Assay and in Silico Prediction Models To Evaluate Transport Potential of P‑Glycoprotein</title><title>Molecular pharmaceutics</title><addtitle>Mol. Pharmaceutics</addtitle><description>For efficient drug discovery and screening, it is necessary to simplify P-glycoprotein (P-gp) substrate assays and to provide in silico models that predict the transport potential of P-gp. In this study, we developed a simplified in vitro screening method to evaluate P-gp substrates by unidirectional membrane transport in P-gp-overexpressing cells. The unidirectional flux ratio positively correlated with parameters of the conventional bidirectional P-gp substrate assay (R 2 = 0.941) and in vivo K p,brain ratio (mdr1a/1b KO/WT) in mice (R 2 = 0.800). Our in vitro P-gp substrate assay had high reproducibility and required approximately half the labor of the conventional method. We also constructed regression models to predict the value of P-gp-mediated flux and three-class classification models to predict P-gp substrate potential (low-, medium-, and high-potential) using 2397 data entries with the largest data set collected under the same experimental conditions. Most compounds in the test set fell within two- and three-fold errors in the random forest regression model (71.3 and 88.5%, respectively). Furthermore, the random forest three-class classification model showed a high balanced accuracy of 0.821 and precision of 0.761 for the low-potential classes in the test set. We concluded that the simplified in vitro P-gp substrate assay was suitable for compound screening in the early stages of drug discovery and that the in silico regression model and three-class classification model using only chemical structure information could identify the transport potential of compounds including P-gp-mediated flux ratios. Our proposed method is expected to be a practical tool to optimize effective central nervous system (CNS) drugs, to avoid CNS side effects, and to improve intestinal absorption.</description><subject>Animals</subject><subject>ATP Binding Cassette Transporter, Subfamily B - genetics</subject><subject>ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism</subject><subject>Biological Availability</subject><subject>Cell Membrane Permeability - physiology</subject><subject>Central Nervous System Agents - metabolism</subject><subject>Computer Simulation</subject><subject>Data Accuracy</subject><subject>Drug Discovery - methods</subject><subject>Drug Evaluation, Preclinical - methods</subject><subject>Intestinal Absorption - physiology</subject><subject>LLC-PK1 Cells</subject><subject>Machine Learning</subject><subject>Protein Transport - physiology</subject><subject>Reproducibility of Results</subject><subject>Swine</subject><subject>Transfection</subject><issn>1543-8384</issn><issn>1543-8392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkd9KwzAYxYMobk5fQeKdN5tJk9bmcsy_oChselvS9itG0qYmqbA7X8Er388nMXVzoFdC4Av5fuccwkHoiJIJJRE9kYWb1Ea3T9LWsoDOT9KcUMrZFhrSmLNxykS0vbmnfID2nHsmJOJxxHbRgBHBWBwlQ_RxBq-gTVtD47Gp8FzVrVaVghKrBj8qbw2-_3x7v9TLwrTWeAjP8y533koPeOqcXGLZfNNzpVURcAulKrwyDb41JWiHFwafv0rd9YqFlY1rjfX4Ppg1Xknd5_7N2Ec7ldQODtZzhB4uzhezq_HN3eX1bHozlpxyP055kqQx0NNYpJDnhFdURIRIKVjYUMoYS1IGccrLquJ5EidJXpYiF6TiZSIkG6HjlW_IfenA-axWrgCtZQOmc1kUkf7wUxpQsUILa5yzUGWtVbW0y4ySrO8lC71kv3rJ1r0E7eE6pstrKDfKnyICEK-A3uPZdLYJv_6H8ReoZKWr</recordid><startdate>20190506</startdate><enddate>20190506</enddate><creator>Ohashi, Rikiya</creator><creator>Watanabe, Reiko</creator><creator>Esaki, Tsuyoshi</creator><creator>Taniguchi, Tomomi</creator><creator>Torimoto-Katori, Nao</creator><creator>Watanabe, Tomoko</creator><creator>Ogasawara, Yuko</creator><creator>Takahashi, Tsuyoshi</creator><creator>Tsukimoto, Mikiko</creator><creator>Mizuguchi, Kenji</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6919-5665</orcidid><orcidid>https://orcid.org/0000-0001-9359-8731</orcidid><orcidid>https://orcid.org/0000-0003-3021-7078</orcidid><orcidid>https://orcid.org/0000-0001-8780-6346</orcidid></search><sort><creationdate>20190506</creationdate><title>Development of Simplified in Vitro P‑Glycoprotein Substrate Assay and in Silico Prediction Models To Evaluate Transport Potential of P‑Glycoprotein</title><author>Ohashi, Rikiya ; Watanabe, Reiko ; Esaki, Tsuyoshi ; Taniguchi, Tomomi ; Torimoto-Katori, Nao ; Watanabe, Tomoko ; Ogasawara, Yuko ; Takahashi, Tsuyoshi ; Tsukimoto, Mikiko ; Mizuguchi, Kenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-846685e17598ebb04f19200aa9346611333683e584dff4b6566bdd9b90f4d69a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>ATP Binding Cassette Transporter, Subfamily B - genetics</topic><topic>ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism</topic><topic>Biological Availability</topic><topic>Cell Membrane Permeability - physiology</topic><topic>Central Nervous System Agents - metabolism</topic><topic>Computer Simulation</topic><topic>Data Accuracy</topic><topic>Drug Discovery - methods</topic><topic>Drug Evaluation, Preclinical - methods</topic><topic>Intestinal Absorption - physiology</topic><topic>LLC-PK1 Cells</topic><topic>Machine Learning</topic><topic>Protein Transport - physiology</topic><topic>Reproducibility of Results</topic><topic>Swine</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohashi, Rikiya</creatorcontrib><creatorcontrib>Watanabe, Reiko</creatorcontrib><creatorcontrib>Esaki, Tsuyoshi</creatorcontrib><creatorcontrib>Taniguchi, Tomomi</creatorcontrib><creatorcontrib>Torimoto-Katori, Nao</creatorcontrib><creatorcontrib>Watanabe, Tomoko</creatorcontrib><creatorcontrib>Ogasawara, Yuko</creatorcontrib><creatorcontrib>Takahashi, Tsuyoshi</creatorcontrib><creatorcontrib>Tsukimoto, Mikiko</creatorcontrib><creatorcontrib>Mizuguchi, Kenji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohashi, Rikiya</au><au>Watanabe, Reiko</au><au>Esaki, Tsuyoshi</au><au>Taniguchi, Tomomi</au><au>Torimoto-Katori, Nao</au><au>Watanabe, Tomoko</au><au>Ogasawara, Yuko</au><au>Takahashi, Tsuyoshi</au><au>Tsukimoto, Mikiko</au><au>Mizuguchi, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Simplified in Vitro P‑Glycoprotein Substrate Assay and in Silico Prediction Models To Evaluate Transport Potential of P‑Glycoprotein</atitle><jtitle>Molecular pharmaceutics</jtitle><addtitle>Mol. Pharmaceutics</addtitle><date>2019-05-06</date><risdate>2019</risdate><volume>16</volume><issue>5</issue><spage>1851</spage><epage>1863</epage><pages>1851-1863</pages><issn>1543-8384</issn><eissn>1543-8392</eissn><abstract>For efficient drug discovery and screening, it is necessary to simplify P-glycoprotein (P-gp) substrate assays and to provide in silico models that predict the transport potential of P-gp. In this study, we developed a simplified in vitro screening method to evaluate P-gp substrates by unidirectional membrane transport in P-gp-overexpressing cells. The unidirectional flux ratio positively correlated with parameters of the conventional bidirectional P-gp substrate assay (R 2 = 0.941) and in vivo K p,brain ratio (mdr1a/1b KO/WT) in mice (R 2 = 0.800). Our in vitro P-gp substrate assay had high reproducibility and required approximately half the labor of the conventional method. We also constructed regression models to predict the value of P-gp-mediated flux and three-class classification models to predict P-gp substrate potential (low-, medium-, and high-potential) using 2397 data entries with the largest data set collected under the same experimental conditions. Most compounds in the test set fell within two- and three-fold errors in the random forest regression model (71.3 and 88.5%, respectively). Furthermore, the random forest three-class classification model showed a high balanced accuracy of 0.821 and precision of 0.761 for the low-potential classes in the test set. We concluded that the simplified in vitro P-gp substrate assay was suitable for compound screening in the early stages of drug discovery and that the in silico regression model and three-class classification model using only chemical structure information could identify the transport potential of compounds including P-gp-mediated flux ratios. Our proposed method is expected to be a practical tool to optimize effective central nervous system (CNS) drugs, to avoid CNS side effects, and to improve intestinal absorption.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30933526</pmid><doi>10.1021/acs.molpharmaceut.8b01143</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6919-5665</orcidid><orcidid>https://orcid.org/0000-0001-9359-8731</orcidid><orcidid>https://orcid.org/0000-0003-3021-7078</orcidid><orcidid>https://orcid.org/0000-0001-8780-6346</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1543-8384 |
ispartof | Molecular pharmaceutics, 2019-05, Vol.16 (5), p.1851-1863 |
issn | 1543-8384 1543-8392 |
language | eng |
recordid | cdi_proquest_miscellaneous_2202202471 |
source | MEDLINE; ACS Publications |
subjects | Animals ATP Binding Cassette Transporter, Subfamily B - genetics ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism Biological Availability Cell Membrane Permeability - physiology Central Nervous System Agents - metabolism Computer Simulation Data Accuracy Drug Discovery - methods Drug Evaluation, Preclinical - methods Intestinal Absorption - physiology LLC-PK1 Cells Machine Learning Protein Transport - physiology Reproducibility of Results Swine Transfection |
title | Development of Simplified in Vitro P‑Glycoprotein Substrate Assay and in Silico Prediction Models To Evaluate Transport Potential of P‑Glycoprotein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Simplified%20in%20Vitro%20P%E2%80%91Glycoprotein%20Substrate%20Assay%20and%20in%20Silico%20Prediction%20Models%20To%20Evaluate%20Transport%20Potential%20of%20P%E2%80%91Glycoprotein&rft.jtitle=Molecular%20pharmaceutics&rft.au=Ohashi,%20Rikiya&rft.date=2019-05-06&rft.volume=16&rft.issue=5&rft.spage=1851&rft.epage=1863&rft.pages=1851-1863&rft.issn=1543-8384&rft.eissn=1543-8392&rft_id=info:doi/10.1021/acs.molpharmaceut.8b01143&rft_dat=%3Cproquest_cross%3E2202202471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202202471&rft_id=info:pmid/30933526&rfr_iscdi=true |