Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops
Plant phenotyping forms the core of crop breeding, allowing breeders to build on physiological traits and mechanistic science to inform their selection of material for crossing and genetic gain. Recent rapid progress in high-throughput techniques based on machine vision, robotics, and computing (pla...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2019-09, Vol.223 (4), p.1714-1727 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1727 |
---|---|
container_issue | 4 |
container_start_page | 1714 |
container_title | The New phytologist |
container_volume | 223 |
creator | Furbank, Robert T. Jimenez-Berni, Jose A. George-Jaeggli, Barbara Potgieter, Andries B. Deery, David M. |
description | Plant phenotyping forms the core of crop breeding, allowing breeders to build on physiological traits and mechanistic science to inform their selection of material for crossing and genetic gain. Recent rapid progress in high-throughput techniques based on machine vision, robotics, and computing (plant phenomics) enables crop physiologists and breeders to quantitatively measure complex and previously intractable traits. By combining these techniques with affordable genomic sequencing and genotyping, machine learning, and genome selection approaches, breeders have an opportunity to make rapid genetic progress. This review focuses on how field-based plant phenomics can enable next-generation physiological breeding in cereal crops for traits related to radiation use efficiency, photosynthesis, and crop biomass. These traits have previously been regarded as difficult and laborious to measure but have recently become a focus as cereal breeders find genetic progress from ‘Green Revolution’ traits such as harvest index become exhausted. Application of LiDAR, thermal imaging, leaf and canopy spectral reflectance, Chl fluorescence, and machine learning are discussed using wheat and sorghum phenotyping as case studies. A vision of how crop genomics and high-throughput phenotyping could enable the next generation of crop research and breeding is presented. |
doi_str_mv | 10.1111/nph.15817 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2202196545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26759513</jstor_id><sourcerecordid>26759513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4767-159571ddb0d0c9920cf90160e18166c9c0f18b435583876f28f530d4ed2887723</originalsourceid><addsrcrecordid>eNp1kD1LA0EQhhdRTIwWgq0SsNHikpnd269SgjFCUAsFuyXZ2yMX7svbHJJ_7-olFoLTTPO8LzMPIecIIwwzLuvVCLlCeUD6GAsdKWTykPQBqIpELN575MT7NQBoLugx6THQTGrQfXIxzVyeDG1T1cN65cqqyKw_JUfpIvfubLcH5G16_zqZRfPnh8fJ3TyysRQyQq65xCRZQgJWawo21YACHCoUwmoLKaplzDhXTEmRUpVyBknsEqqUlJQNyE3XWzfVR-v8xhSZty7PF6WrWm8oBYpa8JgH9PoPuq7apgzXBUooThlXcaBuOyr8433jUlM3WbFotgbBfKsyQZX5URXYq11juyxc8kvu3QRg3AGfWe62_zeZp5fZvvKyS6z9pmp-E1TIYAoZ-wIoa3er</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268523584</pqid></control><display><type>article</type><title>Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Furbank, Robert T. ; Jimenez-Berni, Jose A. ; George-Jaeggli, Barbara ; Potgieter, Andries B. ; Deery, David M.</creator><creatorcontrib>Furbank, Robert T. ; Jimenez-Berni, Jose A. ; George-Jaeggli, Barbara ; Potgieter, Andries B. ; Deery, David M.</creatorcontrib><description>Plant phenotyping forms the core of crop breeding, allowing breeders to build on physiological traits and mechanistic science to inform their selection of material for crossing and genetic gain. Recent rapid progress in high-throughput techniques based on machine vision, robotics, and computing (plant phenomics) enables crop physiologists and breeders to quantitatively measure complex and previously intractable traits. By combining these techniques with affordable genomic sequencing and genotyping, machine learning, and genome selection approaches, breeders have an opportunity to make rapid genetic progress. This review focuses on how field-based plant phenomics can enable next-generation physiological breeding in cereal crops for traits related to radiation use efficiency, photosynthesis, and crop biomass. These traits have previously been regarded as difficult and laborious to measure but have recently become a focus as cereal breeders find genetic progress from ‘Green Revolution’ traits such as harvest index become exhausted. Application of LiDAR, thermal imaging, leaf and canopy spectral reflectance, Chl fluorescence, and machine learning are discussed using wheat and sorghum phenotyping as case studies. A vision of how crop genomics and high-throughput phenotyping could enable the next generation of crop research and breeding is presented.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.15817</identifier><identifier>PMID: 30937909</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Artificial intelligence ; big data ; Biomass ; Breeding ; canopy temperature ; Cereal crops ; crop breeding ; crop physiology ; Crops ; Crops, Agricultural - physiology ; Edible Grain - physiology ; Energy crops ; Fluorescence ; Gene sequencing ; Genetic improvement ; Genomes ; Genomics ; Genotyping ; Green revolution ; Imaging techniques ; Learning algorithms ; Lidar ; Machine learning ; Machine vision ; Phenomics ; Phenotyping ; Photosynthesis ; Physiology ; Plant Breeding ; Plant cover ; Radiation ; Reflectance ; Robotics ; Sorghum ; Spectral reflectance ; stomatal conductance ; Tansley review ; Thermal imaging ; Wheat</subject><ispartof>The New phytologist, 2019-09, Vol.223 (4), p.1714-1727</ispartof><rights>2019 The Authors © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</rights><rights>Copyright © 2019 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4767-159571ddb0d0c9920cf90160e18166c9c0f18b435583876f28f530d4ed2887723</citedby><cites>FETCH-LOGICAL-c4767-159571ddb0d0c9920cf90160e18166c9c0f18b435583876f28f530d4ed2887723</cites><orcidid>0000-0002-9711-2759 ; 0000-0002-1671-8266 ; 0000-0001-6542-921X ; 0000-0001-5486-6625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26759513$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26759513$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,1412,1428,27905,27906,45555,45556,46390,46814,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30937909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Furbank, Robert T.</creatorcontrib><creatorcontrib>Jimenez-Berni, Jose A.</creatorcontrib><creatorcontrib>George-Jaeggli, Barbara</creatorcontrib><creatorcontrib>Potgieter, Andries B.</creatorcontrib><creatorcontrib>Deery, David M.</creatorcontrib><title>Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Plant phenotyping forms the core of crop breeding, allowing breeders to build on physiological traits and mechanistic science to inform their selection of material for crossing and genetic gain. Recent rapid progress in high-throughput techniques based on machine vision, robotics, and computing (plant phenomics) enables crop physiologists and breeders to quantitatively measure complex and previously intractable traits. By combining these techniques with affordable genomic sequencing and genotyping, machine learning, and genome selection approaches, breeders have an opportunity to make rapid genetic progress. This review focuses on how field-based plant phenomics can enable next-generation physiological breeding in cereal crops for traits related to radiation use efficiency, photosynthesis, and crop biomass. These traits have previously been regarded as difficult and laborious to measure but have recently become a focus as cereal breeders find genetic progress from ‘Green Revolution’ traits such as harvest index become exhausted. Application of LiDAR, thermal imaging, leaf and canopy spectral reflectance, Chl fluorescence, and machine learning are discussed using wheat and sorghum phenotyping as case studies. A vision of how crop genomics and high-throughput phenotyping could enable the next generation of crop research and breeding is presented.</description><subject>Artificial intelligence</subject><subject>big data</subject><subject>Biomass</subject><subject>Breeding</subject><subject>canopy temperature</subject><subject>Cereal crops</subject><subject>crop breeding</subject><subject>crop physiology</subject><subject>Crops</subject><subject>Crops, Agricultural - physiology</subject><subject>Edible Grain - physiology</subject><subject>Energy crops</subject><subject>Fluorescence</subject><subject>Gene sequencing</subject><subject>Genetic improvement</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotyping</subject><subject>Green revolution</subject><subject>Imaging techniques</subject><subject>Learning algorithms</subject><subject>Lidar</subject><subject>Machine learning</subject><subject>Machine vision</subject><subject>Phenomics</subject><subject>Phenotyping</subject><subject>Photosynthesis</subject><subject>Physiology</subject><subject>Plant Breeding</subject><subject>Plant cover</subject><subject>Radiation</subject><subject>Reflectance</subject><subject>Robotics</subject><subject>Sorghum</subject><subject>Spectral reflectance</subject><subject>stomatal conductance</subject><subject>Tansley review</subject><subject>Thermal imaging</subject><subject>Wheat</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1LA0EQhhdRTIwWgq0SsNHikpnd269SgjFCUAsFuyXZ2yMX7svbHJJ_7-olFoLTTPO8LzMPIecIIwwzLuvVCLlCeUD6GAsdKWTykPQBqIpELN575MT7NQBoLugx6THQTGrQfXIxzVyeDG1T1cN65cqqyKw_JUfpIvfubLcH5G16_zqZRfPnh8fJ3TyysRQyQq65xCRZQgJWawo21YACHCoUwmoLKaplzDhXTEmRUpVyBknsEqqUlJQNyE3XWzfVR-v8xhSZty7PF6WrWm8oBYpa8JgH9PoPuq7apgzXBUooThlXcaBuOyr8433jUlM3WbFotgbBfKsyQZX5URXYq11juyxc8kvu3QRg3AGfWe62_zeZp5fZvvKyS6z9pmp-E1TIYAoZ-wIoa3er</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Furbank, Robert T.</creator><creator>Jimenez-Berni, Jose A.</creator><creator>George-Jaeggli, Barbara</creator><creator>Potgieter, Andries B.</creator><creator>Deery, David M.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9711-2759</orcidid><orcidid>https://orcid.org/0000-0002-1671-8266</orcidid><orcidid>https://orcid.org/0000-0001-6542-921X</orcidid><orcidid>https://orcid.org/0000-0001-5486-6625</orcidid></search><sort><creationdate>201909</creationdate><title>Field crop phenomics</title><author>Furbank, Robert T. ; Jimenez-Berni, Jose A. ; George-Jaeggli, Barbara ; Potgieter, Andries B. ; Deery, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4767-159571ddb0d0c9920cf90160e18166c9c0f18b435583876f28f530d4ed2887723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>big data</topic><topic>Biomass</topic><topic>Breeding</topic><topic>canopy temperature</topic><topic>Cereal crops</topic><topic>crop breeding</topic><topic>crop physiology</topic><topic>Crops</topic><topic>Crops, Agricultural - physiology</topic><topic>Edible Grain - physiology</topic><topic>Energy crops</topic><topic>Fluorescence</topic><topic>Gene sequencing</topic><topic>Genetic improvement</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotyping</topic><topic>Green revolution</topic><topic>Imaging techniques</topic><topic>Learning algorithms</topic><topic>Lidar</topic><topic>Machine learning</topic><topic>Machine vision</topic><topic>Phenomics</topic><topic>Phenotyping</topic><topic>Photosynthesis</topic><topic>Physiology</topic><topic>Plant Breeding</topic><topic>Plant cover</topic><topic>Radiation</topic><topic>Reflectance</topic><topic>Robotics</topic><topic>Sorghum</topic><topic>Spectral reflectance</topic><topic>stomatal conductance</topic><topic>Tansley review</topic><topic>Thermal imaging</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furbank, Robert T.</creatorcontrib><creatorcontrib>Jimenez-Berni, Jose A.</creatorcontrib><creatorcontrib>George-Jaeggli, Barbara</creatorcontrib><creatorcontrib>Potgieter, Andries B.</creatorcontrib><creatorcontrib>Deery, David M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furbank, Robert T.</au><au>Jimenez-Berni, Jose A.</au><au>George-Jaeggli, Barbara</au><au>Potgieter, Andries B.</au><au>Deery, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2019-09</date><risdate>2019</risdate><volume>223</volume><issue>4</issue><spage>1714</spage><epage>1727</epage><pages>1714-1727</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Plant phenotyping forms the core of crop breeding, allowing breeders to build on physiological traits and mechanistic science to inform their selection of material for crossing and genetic gain. Recent rapid progress in high-throughput techniques based on machine vision, robotics, and computing (plant phenomics) enables crop physiologists and breeders to quantitatively measure complex and previously intractable traits. By combining these techniques with affordable genomic sequencing and genotyping, machine learning, and genome selection approaches, breeders have an opportunity to make rapid genetic progress. This review focuses on how field-based plant phenomics can enable next-generation physiological breeding in cereal crops for traits related to radiation use efficiency, photosynthesis, and crop biomass. These traits have previously been regarded as difficult and laborious to measure but have recently become a focus as cereal breeders find genetic progress from ‘Green Revolution’ traits such as harvest index become exhausted. Application of LiDAR, thermal imaging, leaf and canopy spectral reflectance, Chl fluorescence, and machine learning are discussed using wheat and sorghum phenotyping as case studies. A vision of how crop genomics and high-throughput phenotyping could enable the next generation of crop research and breeding is presented.</abstract><cop>England</cop><pub>Wiley</pub><pmid>30937909</pmid><doi>10.1111/nph.15817</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9711-2759</orcidid><orcidid>https://orcid.org/0000-0002-1671-8266</orcidid><orcidid>https://orcid.org/0000-0001-6542-921X</orcidid><orcidid>https://orcid.org/0000-0001-5486-6625</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2019-09, Vol.223 (4), p.1714-1727 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_2202196545 |
source | Wiley-Blackwell Journals; MEDLINE; Wiley Online Library Free Content; JSTOR; EZB Electronic Journals Library |
subjects | Artificial intelligence big data Biomass Breeding canopy temperature Cereal crops crop breeding crop physiology Crops Crops, Agricultural - physiology Edible Grain - physiology Energy crops Fluorescence Gene sequencing Genetic improvement Genomes Genomics Genotyping Green revolution Imaging techniques Learning algorithms Lidar Machine learning Machine vision Phenomics Phenotyping Photosynthesis Physiology Plant Breeding Plant cover Radiation Reflectance Robotics Sorghum Spectral reflectance stomatal conductance Tansley review Thermal imaging Wheat |
title | Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A12%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field%20crop%20phenomics:%20enabling%20breeding%20for%20radiation%20use%20efficiency%20and%20biomass%20in%20cereal%20crops&rft.jtitle=The%20New%20phytologist&rft.au=Furbank,%20Robert%20T.&rft.date=2019-09&rft.volume=223&rft.issue=4&rft.spage=1714&rft.epage=1727&rft.pages=1714-1727&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.15817&rft_dat=%3Cjstor_proqu%3E26759513%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268523584&rft_id=info:pmid/30937909&rft_jstor_id=26759513&rfr_iscdi=true |