Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops

Plant phenotyping forms the core of crop breeding, allowing breeders to build on physiological traits and mechanistic science to inform their selection of material for crossing and genetic gain. Recent rapid progress in high-throughput techniques based on machine vision, robotics, and computing (pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2019-09, Vol.223 (4), p.1714-1727
Hauptverfasser: Furbank, Robert T., Jimenez-Berni, Jose A., George-Jaeggli, Barbara, Potgieter, Andries B., Deery, David M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1727
container_issue 4
container_start_page 1714
container_title The New phytologist
container_volume 223
creator Furbank, Robert T.
Jimenez-Berni, Jose A.
George-Jaeggli, Barbara
Potgieter, Andries B.
Deery, David M.
description Plant phenotyping forms the core of crop breeding, allowing breeders to build on physiological traits and mechanistic science to inform their selection of material for crossing and genetic gain. Recent rapid progress in high-throughput techniques based on machine vision, robotics, and computing (plant phenomics) enables crop physiologists and breeders to quantitatively measure complex and previously intractable traits. By combining these techniques with affordable genomic sequencing and genotyping, machine learning, and genome selection approaches, breeders have an opportunity to make rapid genetic progress. This review focuses on how field-based plant phenomics can enable next-generation physiological breeding in cereal crops for traits related to radiation use efficiency, photosynthesis, and crop biomass. These traits have previously been regarded as difficult and laborious to measure but have recently become a focus as cereal breeders find genetic progress from ‘Green Revolution’ traits such as harvest index become exhausted. Application of LiDAR, thermal imaging, leaf and canopy spectral reflectance, Chl fluorescence, and machine learning are discussed using wheat and sorghum phenotyping as case studies. A vision of how crop genomics and high-throughput phenotyping could enable the next generation of crop research and breeding is presented.
doi_str_mv 10.1111/nph.15817
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2202196545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26759513</jstor_id><sourcerecordid>26759513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4767-159571ddb0d0c9920cf90160e18166c9c0f18b435583876f28f530d4ed2887723</originalsourceid><addsrcrecordid>eNp1kD1LA0EQhhdRTIwWgq0SsNHikpnd269SgjFCUAsFuyXZ2yMX7svbHJJ_7-olFoLTTPO8LzMPIecIIwwzLuvVCLlCeUD6GAsdKWTykPQBqIpELN575MT7NQBoLugx6THQTGrQfXIxzVyeDG1T1cN65cqqyKw_JUfpIvfubLcH5G16_zqZRfPnh8fJ3TyysRQyQq65xCRZQgJWawo21YACHCoUwmoLKaplzDhXTEmRUpVyBknsEqqUlJQNyE3XWzfVR-v8xhSZty7PF6WrWm8oBYpa8JgH9PoPuq7apgzXBUooThlXcaBuOyr8433jUlM3WbFotgbBfKsyQZX5URXYq11juyxc8kvu3QRg3AGfWe62_zeZp5fZvvKyS6z9pmp-E1TIYAoZ-wIoa3er</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268523584</pqid></control><display><type>article</type><title>Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Furbank, Robert T. ; Jimenez-Berni, Jose A. ; George-Jaeggli, Barbara ; Potgieter, Andries B. ; Deery, David M.</creator><creatorcontrib>Furbank, Robert T. ; Jimenez-Berni, Jose A. ; George-Jaeggli, Barbara ; Potgieter, Andries B. ; Deery, David M.</creatorcontrib><description>Plant phenotyping forms the core of crop breeding, allowing breeders to build on physiological traits and mechanistic science to inform their selection of material for crossing and genetic gain. Recent rapid progress in high-throughput techniques based on machine vision, robotics, and computing (plant phenomics) enables crop physiologists and breeders to quantitatively measure complex and previously intractable traits. By combining these techniques with affordable genomic sequencing and genotyping, machine learning, and genome selection approaches, breeders have an opportunity to make rapid genetic progress. This review focuses on how field-based plant phenomics can enable next-generation physiological breeding in cereal crops for traits related to radiation use efficiency, photosynthesis, and crop biomass. These traits have previously been regarded as difficult and laborious to measure but have recently become a focus as cereal breeders find genetic progress from ‘Green Revolution’ traits such as harvest index become exhausted. Application of LiDAR, thermal imaging, leaf and canopy spectral reflectance, Chl fluorescence, and machine learning are discussed using wheat and sorghum phenotyping as case studies. A vision of how crop genomics and high-throughput phenotyping could enable the next generation of crop research and breeding is presented.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.15817</identifier><identifier>PMID: 30937909</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Artificial intelligence ; big data ; Biomass ; Breeding ; canopy temperature ; Cereal crops ; crop breeding ; crop physiology ; Crops ; Crops, Agricultural - physiology ; Edible Grain - physiology ; Energy crops ; Fluorescence ; Gene sequencing ; Genetic improvement ; Genomes ; Genomics ; Genotyping ; Green revolution ; Imaging techniques ; Learning algorithms ; Lidar ; Machine learning ; Machine vision ; Phenomics ; Phenotyping ; Photosynthesis ; Physiology ; Plant Breeding ; Plant cover ; Radiation ; Reflectance ; Robotics ; Sorghum ; Spectral reflectance ; stomatal conductance ; Tansley review ; Thermal imaging ; Wheat</subject><ispartof>The New phytologist, 2019-09, Vol.223 (4), p.1714-1727</ispartof><rights>2019 The Authors © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</rights><rights>Copyright © 2019 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4767-159571ddb0d0c9920cf90160e18166c9c0f18b435583876f28f530d4ed2887723</citedby><cites>FETCH-LOGICAL-c4767-159571ddb0d0c9920cf90160e18166c9c0f18b435583876f28f530d4ed2887723</cites><orcidid>0000-0002-9711-2759 ; 0000-0002-1671-8266 ; 0000-0001-6542-921X ; 0000-0001-5486-6625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26759513$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26759513$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,1412,1428,27905,27906,45555,45556,46390,46814,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30937909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Furbank, Robert T.</creatorcontrib><creatorcontrib>Jimenez-Berni, Jose A.</creatorcontrib><creatorcontrib>George-Jaeggli, Barbara</creatorcontrib><creatorcontrib>Potgieter, Andries B.</creatorcontrib><creatorcontrib>Deery, David M.</creatorcontrib><title>Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Plant phenotyping forms the core of crop breeding, allowing breeders to build on physiological traits and mechanistic science to inform their selection of material for crossing and genetic gain. Recent rapid progress in high-throughput techniques based on machine vision, robotics, and computing (plant phenomics) enables crop physiologists and breeders to quantitatively measure complex and previously intractable traits. By combining these techniques with affordable genomic sequencing and genotyping, machine learning, and genome selection approaches, breeders have an opportunity to make rapid genetic progress. This review focuses on how field-based plant phenomics can enable next-generation physiological breeding in cereal crops for traits related to radiation use efficiency, photosynthesis, and crop biomass. These traits have previously been regarded as difficult and laborious to measure but have recently become a focus as cereal breeders find genetic progress from ‘Green Revolution’ traits such as harvest index become exhausted. Application of LiDAR, thermal imaging, leaf and canopy spectral reflectance, Chl fluorescence, and machine learning are discussed using wheat and sorghum phenotyping as case studies. A vision of how crop genomics and high-throughput phenotyping could enable the next generation of crop research and breeding is presented.</description><subject>Artificial intelligence</subject><subject>big data</subject><subject>Biomass</subject><subject>Breeding</subject><subject>canopy temperature</subject><subject>Cereal crops</subject><subject>crop breeding</subject><subject>crop physiology</subject><subject>Crops</subject><subject>Crops, Agricultural - physiology</subject><subject>Edible Grain - physiology</subject><subject>Energy crops</subject><subject>Fluorescence</subject><subject>Gene sequencing</subject><subject>Genetic improvement</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotyping</subject><subject>Green revolution</subject><subject>Imaging techniques</subject><subject>Learning algorithms</subject><subject>Lidar</subject><subject>Machine learning</subject><subject>Machine vision</subject><subject>Phenomics</subject><subject>Phenotyping</subject><subject>Photosynthesis</subject><subject>Physiology</subject><subject>Plant Breeding</subject><subject>Plant cover</subject><subject>Radiation</subject><subject>Reflectance</subject><subject>Robotics</subject><subject>Sorghum</subject><subject>Spectral reflectance</subject><subject>stomatal conductance</subject><subject>Tansley review</subject><subject>Thermal imaging</subject><subject>Wheat</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1LA0EQhhdRTIwWgq0SsNHikpnd269SgjFCUAsFuyXZ2yMX7svbHJJ_7-olFoLTTPO8LzMPIecIIwwzLuvVCLlCeUD6GAsdKWTykPQBqIpELN575MT7NQBoLugx6THQTGrQfXIxzVyeDG1T1cN65cqqyKw_JUfpIvfubLcH5G16_zqZRfPnh8fJ3TyysRQyQq65xCRZQgJWawo21YACHCoUwmoLKaplzDhXTEmRUpVyBknsEqqUlJQNyE3XWzfVR-v8xhSZty7PF6WrWm8oBYpa8JgH9PoPuq7apgzXBUooThlXcaBuOyr8433jUlM3WbFotgbBfKsyQZX5URXYq11juyxc8kvu3QRg3AGfWe62_zeZp5fZvvKyS6z9pmp-E1TIYAoZ-wIoa3er</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Furbank, Robert T.</creator><creator>Jimenez-Berni, Jose A.</creator><creator>George-Jaeggli, Barbara</creator><creator>Potgieter, Andries B.</creator><creator>Deery, David M.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9711-2759</orcidid><orcidid>https://orcid.org/0000-0002-1671-8266</orcidid><orcidid>https://orcid.org/0000-0001-6542-921X</orcidid><orcidid>https://orcid.org/0000-0001-5486-6625</orcidid></search><sort><creationdate>201909</creationdate><title>Field crop phenomics</title><author>Furbank, Robert T. ; Jimenez-Berni, Jose A. ; George-Jaeggli, Barbara ; Potgieter, Andries B. ; Deery, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4767-159571ddb0d0c9920cf90160e18166c9c0f18b435583876f28f530d4ed2887723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>big data</topic><topic>Biomass</topic><topic>Breeding</topic><topic>canopy temperature</topic><topic>Cereal crops</topic><topic>crop breeding</topic><topic>crop physiology</topic><topic>Crops</topic><topic>Crops, Agricultural - physiology</topic><topic>Edible Grain - physiology</topic><topic>Energy crops</topic><topic>Fluorescence</topic><topic>Gene sequencing</topic><topic>Genetic improvement</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotyping</topic><topic>Green revolution</topic><topic>Imaging techniques</topic><topic>Learning algorithms</topic><topic>Lidar</topic><topic>Machine learning</topic><topic>Machine vision</topic><topic>Phenomics</topic><topic>Phenotyping</topic><topic>Photosynthesis</topic><topic>Physiology</topic><topic>Plant Breeding</topic><topic>Plant cover</topic><topic>Radiation</topic><topic>Reflectance</topic><topic>Robotics</topic><topic>Sorghum</topic><topic>Spectral reflectance</topic><topic>stomatal conductance</topic><topic>Tansley review</topic><topic>Thermal imaging</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furbank, Robert T.</creatorcontrib><creatorcontrib>Jimenez-Berni, Jose A.</creatorcontrib><creatorcontrib>George-Jaeggli, Barbara</creatorcontrib><creatorcontrib>Potgieter, Andries B.</creatorcontrib><creatorcontrib>Deery, David M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furbank, Robert T.</au><au>Jimenez-Berni, Jose A.</au><au>George-Jaeggli, Barbara</au><au>Potgieter, Andries B.</au><au>Deery, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2019-09</date><risdate>2019</risdate><volume>223</volume><issue>4</issue><spage>1714</spage><epage>1727</epage><pages>1714-1727</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Plant phenotyping forms the core of crop breeding, allowing breeders to build on physiological traits and mechanistic science to inform their selection of material for crossing and genetic gain. Recent rapid progress in high-throughput techniques based on machine vision, robotics, and computing (plant phenomics) enables crop physiologists and breeders to quantitatively measure complex and previously intractable traits. By combining these techniques with affordable genomic sequencing and genotyping, machine learning, and genome selection approaches, breeders have an opportunity to make rapid genetic progress. This review focuses on how field-based plant phenomics can enable next-generation physiological breeding in cereal crops for traits related to radiation use efficiency, photosynthesis, and crop biomass. These traits have previously been regarded as difficult and laborious to measure but have recently become a focus as cereal breeders find genetic progress from ‘Green Revolution’ traits such as harvest index become exhausted. Application of LiDAR, thermal imaging, leaf and canopy spectral reflectance, Chl fluorescence, and machine learning are discussed using wheat and sorghum phenotyping as case studies. A vision of how crop genomics and high-throughput phenotyping could enable the next generation of crop research and breeding is presented.</abstract><cop>England</cop><pub>Wiley</pub><pmid>30937909</pmid><doi>10.1111/nph.15817</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9711-2759</orcidid><orcidid>https://orcid.org/0000-0002-1671-8266</orcidid><orcidid>https://orcid.org/0000-0001-6542-921X</orcidid><orcidid>https://orcid.org/0000-0001-5486-6625</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2019-09, Vol.223 (4), p.1714-1727
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2202196545
source Wiley-Blackwell Journals; MEDLINE; Wiley Online Library Free Content; JSTOR; EZB Electronic Journals Library
subjects Artificial intelligence
big data
Biomass
Breeding
canopy temperature
Cereal crops
crop breeding
crop physiology
Crops
Crops, Agricultural - physiology
Edible Grain - physiology
Energy crops
Fluorescence
Gene sequencing
Genetic improvement
Genomes
Genomics
Genotyping
Green revolution
Imaging techniques
Learning algorithms
Lidar
Machine learning
Machine vision
Phenomics
Phenotyping
Photosynthesis
Physiology
Plant Breeding
Plant cover
Radiation
Reflectance
Robotics
Sorghum
Spectral reflectance
stomatal conductance
Tansley review
Thermal imaging
Wheat
title Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A12%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field%20crop%20phenomics:%20enabling%20breeding%20for%20radiation%20use%20efficiency%20and%20biomass%20in%20cereal%20crops&rft.jtitle=The%20New%20phytologist&rft.au=Furbank,%20Robert%20T.&rft.date=2019-09&rft.volume=223&rft.issue=4&rft.spage=1714&rft.epage=1727&rft.pages=1714-1727&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.15817&rft_dat=%3Cjstor_proqu%3E26759513%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268523584&rft_id=info:pmid/30937909&rft_jstor_id=26759513&rfr_iscdi=true