Shaping Electron Wave Functions in a Carbon Nanotube with a Parallel Magnetic Field

A magnetic field, through its vector potential, usually causes measurable changes in the electron wave function only in the direction transverse to the field. Here, we demonstrate experimentally and theoretically that, in carbon nanotube quantum dots combining cylindrical topology and bipartite hexa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-03, Vol.122 (8), p.086802-086802, Article 086802
Hauptverfasser: Margańska, M, Schmid, D R, Dirnaichner, A, Stiller, P L, Strunk, Ch, Grifoni, M, Hüttel, A K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A magnetic field, through its vector potential, usually causes measurable changes in the electron wave function only in the direction transverse to the field. Here, we demonstrate experimentally and theoretically that, in carbon nanotube quantum dots combining cylindrical topology and bipartite hexagonal lattice, a magnetic field along the nanotube axis impacts also the longitudinal profile of the electronic states. With the high (up to 17 T) magnetic fields in our experiment, the wave functions can be tuned all the way from a "half-wave resonator" shape with nodes at both ends to a "quarter-wave resonator" shape with an antinode at one end. This in turn causes a distinct dependence of the conductance on the magnetic field. Our results demonstrate a new strategy for the control of wave functions using magnetic fields in quantum systems with a nontrivial lattice and topology.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.122.086802