Co-delivery of antigen and dual agonists by programmed mannose-targeted cationic lipid-hybrid polymersomes for enhanced vaccination
Exploiting Toll-like receptor (TLR) agonists or their certain combinations can enhance the immune potency of subunit vaccine. Nevertheless, the design of co-delivery systems which can act in a synergistic and spatio-temporal way to achieve effective and durable specific immune response is still chal...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2019-06, Vol.206, p.25-40 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exploiting Toll-like receptor (TLR) agonists or their certain combinations can enhance the immune potency of subunit vaccine. Nevertheless, the design of co-delivery systems which can act in a synergistic and spatio-temporal way to achieve effective and durable specific immune response is still challenging. Here we fabricated mannose-functionalized lipid-hybrid polymersomes (MAN-IMO-PS) for co-delivery of ovalbumin antigen both inside the inner core and outside the lipid layer, TLR7/8 agonist imiquimod within the hydrophobic membrane, TLR4 agonist monophosphoryl lipid A in the lipid layer as programmed nanovaccine to synergistically activate immune responses for improving vaccine efficacy. After efficiently internalized by dendritic cells via mannose targeting and TLR4 ligating, MAN-IMO-PS significantly enhanced cross-presentation and cytokine production. In addition, MAN-IMO-PS showed depot effect at the injection site and enhanced migration to draining lymph nodes. Mice immunized with MAN-IMO-PS elicited greater lymphocyte activation, CD4+ and CD8+ T cell response, effector cytokines secretion, and induced Th-1 biased humoral responses. More importantly, prophylactic vaccination by MAN-IMO-PS significantly delayed tumor occurrence, suppressed tumor growth with prolonged survival, and achieved long-term immune effect. The present study demonstrates a rationally designed nanovaccine for combining antigen, different TLR agonists, and targeting moiety in a programmed manner to induce synergistic antitumor immune response. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2019.03.012 |