Pressure-induced phase transitions and structural evolution across the insulator-metal transition in bulk and nanoscale BiFeO3

The pressure-induced phase-transition sequences and structural evolution across the insulator-metal transition (IMT) in multiferroic BiFeO3 still remain unclear. Here we use a combination of high-pressure XRD, XAFS experiment and first principle calculation to investigate the pressure-derived struct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2019-07, Vol.31 (26), p.265404-265404
Hauptverfasser: Guo, Zhiying, Xing, Haiying, Wang, Yan, Jia, Quanjie, Zheng, Zhijian, Gong, Yu, Yang, Dongliang, Li, Haijing, Hao, Xinyu, Dong, Juncai, Li, Yanchun, Li, Xiaodong, Chen, Dongliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 265404
container_issue 26
container_start_page 265404
container_title Journal of physics. Condensed matter
container_volume 31
creator Guo, Zhiying
Xing, Haiying
Wang, Yan
Jia, Quanjie
Zheng, Zhijian
Gong, Yu
Yang, Dongliang
Li, Haijing
Hao, Xinyu
Dong, Juncai
Li, Yanchun
Li, Xiaodong
Chen, Dongliang
description The pressure-induced phase-transition sequences and structural evolution across the insulator-metal transition (IMT) in multiferroic BiFeO3 still remain unclear. Here we use a combination of high-pressure XRD, XAFS experiment and first principle calculation to investigate the pressure-derived structural transformations and structure-related properties in bulk and nanoscale BiFeO3 up to 55 GPa. A new Imma structure of BiFeO3 has been discovered in the pressure range of 48-52 GPa, which presents ferromagnetic (FM) metallic properties and therefore plays a key role in the IMT. Local structure study reveals that the Bi3+ cation gradually shifts toward the centrosymmetric position in BiO12 cluster during IMT. Besides, the detailed structural information of post-perovskite Cmcm phase has also been determined and thus the complete phase sequence up to 60 GPa is obtained. Our research provides a structural origin of the IMT and a new way to understand the FM release in BiFeO3 system.
doi_str_mv 10.1088/1361-648X/ab1469
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2200777999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2200777999</sourcerecordid><originalsourceid>FETCH-LOGICAL-i257t-d15444bad0dd7d9a6e1d3271198889c21ccb6652b30654deb2e3c9e88b4b64953</originalsourceid><addsrcrecordid>eNptkU1LAzEQhoMoWKt3j7npwdVkk80mRy1WhYIeFLyFbDLi1m1S8-HR3-7Wil6EgYGZZ15m3kHomJJzSqS8oEzQSnD5fGE6yoXaQZPf0i6aENWwSirJ99FBSktCCJeMT9DnQ4SUSoSq965YcHj9ahLgHI1Pfe6DT9h4h1OOxeYSzYDhIwxl08HGxpASzq-Ae5_KYHKI1QryCP3Njy3cleHtW8YbH5I1A-Crfg737BDtvZghwdFPnqKn-fXj7LZa3N_czS4XVV83ba4cbTjnnXHEudYpI4A6VreUKimlsjW1thOiqTtGRMMddDUwq0DKjneCj6dP0elWdx3De4GU9apPFobBeAgl6bompG1bpdSInmzRPqz1MpTox8W0XWlGdS3GaDjheu1eRvLsH5ISvXmI3rivN-7r7UPYFyqCgDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200777999</pqid></control><display><type>article</type><title>Pressure-induced phase transitions and structural evolution across the insulator-metal transition in bulk and nanoscale BiFeO3</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Guo, Zhiying ; Xing, Haiying ; Wang, Yan ; Jia, Quanjie ; Zheng, Zhijian ; Gong, Yu ; Yang, Dongliang ; Li, Haijing ; Hao, Xinyu ; Dong, Juncai ; Li, Yanchun ; Li, Xiaodong ; Chen, Dongliang</creator><creatorcontrib>Guo, Zhiying ; Xing, Haiying ; Wang, Yan ; Jia, Quanjie ; Zheng, Zhijian ; Gong, Yu ; Yang, Dongliang ; Li, Haijing ; Hao, Xinyu ; Dong, Juncai ; Li, Yanchun ; Li, Xiaodong ; Chen, Dongliang</creatorcontrib><description>The pressure-induced phase-transition sequences and structural evolution across the insulator-metal transition (IMT) in multiferroic BiFeO3 still remain unclear. Here we use a combination of high-pressure XRD, XAFS experiment and first principle calculation to investigate the pressure-derived structural transformations and structure-related properties in bulk and nanoscale BiFeO3 up to 55 GPa. A new Imma structure of BiFeO3 has been discovered in the pressure range of 48-52 GPa, which presents ferromagnetic (FM) metallic properties and therefore plays a key role in the IMT. Local structure study reveals that the Bi3+ cation gradually shifts toward the centrosymmetric position in BiO12 cluster during IMT. Besides, the detailed structural information of post-perovskite Cmcm phase has also been determined and thus the complete phase sequence up to 60 GPa is obtained. Our research provides a structural origin of the IMT and a new way to understand the FM release in BiFeO3 system.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ab1469</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>high pressure ; insulator-metal transition ; multiferroic BiFeO ; structural transformation</subject><ispartof>Journal of physics. Condensed matter, 2019-07, Vol.31 (26), p.265404-265404</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2290-1198 ; 0000-0002-0835-0684 ; 0000-0001-5904-3409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/ab1469/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Guo, Zhiying</creatorcontrib><creatorcontrib>Xing, Haiying</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Jia, Quanjie</creatorcontrib><creatorcontrib>Zheng, Zhijian</creatorcontrib><creatorcontrib>Gong, Yu</creatorcontrib><creatorcontrib>Yang, Dongliang</creatorcontrib><creatorcontrib>Li, Haijing</creatorcontrib><creatorcontrib>Hao, Xinyu</creatorcontrib><creatorcontrib>Dong, Juncai</creatorcontrib><creatorcontrib>Li, Yanchun</creatorcontrib><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Chen, Dongliang</creatorcontrib><title>Pressure-induced phase transitions and structural evolution across the insulator-metal transition in bulk and nanoscale BiFeO3</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>The pressure-induced phase-transition sequences and structural evolution across the insulator-metal transition (IMT) in multiferroic BiFeO3 still remain unclear. Here we use a combination of high-pressure XRD, XAFS experiment and first principle calculation to investigate the pressure-derived structural transformations and structure-related properties in bulk and nanoscale BiFeO3 up to 55 GPa. A new Imma structure of BiFeO3 has been discovered in the pressure range of 48-52 GPa, which presents ferromagnetic (FM) metallic properties and therefore plays a key role in the IMT. Local structure study reveals that the Bi3+ cation gradually shifts toward the centrosymmetric position in BiO12 cluster during IMT. Besides, the detailed structural information of post-perovskite Cmcm phase has also been determined and thus the complete phase sequence up to 60 GPa is obtained. Our research provides a structural origin of the IMT and a new way to understand the FM release in BiFeO3 system.</description><subject>high pressure</subject><subject>insulator-metal transition</subject><subject>multiferroic BiFeO</subject><subject>structural transformation</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkU1LAzEQhoMoWKt3j7npwdVkk80mRy1WhYIeFLyFbDLi1m1S8-HR3-7Wil6EgYGZZ15m3kHomJJzSqS8oEzQSnD5fGE6yoXaQZPf0i6aENWwSirJ99FBSktCCJeMT9DnQ4SUSoSq965YcHj9ahLgHI1Pfe6DT9h4h1OOxeYSzYDhIwxl08HGxpASzq-Ae5_KYHKI1QryCP3Njy3cleHtW8YbH5I1A-Crfg737BDtvZghwdFPnqKn-fXj7LZa3N_czS4XVV83ba4cbTjnnXHEudYpI4A6VreUKimlsjW1thOiqTtGRMMddDUwq0DKjneCj6dP0elWdx3De4GU9apPFobBeAgl6bompG1bpdSInmzRPqz1MpTox8W0XWlGdS3GaDjheu1eRvLsH5ISvXmI3rivN-7r7UPYFyqCgDs</recordid><startdate>20190703</startdate><enddate>20190703</enddate><creator>Guo, Zhiying</creator><creator>Xing, Haiying</creator><creator>Wang, Yan</creator><creator>Jia, Quanjie</creator><creator>Zheng, Zhijian</creator><creator>Gong, Yu</creator><creator>Yang, Dongliang</creator><creator>Li, Haijing</creator><creator>Hao, Xinyu</creator><creator>Dong, Juncai</creator><creator>Li, Yanchun</creator><creator>Li, Xiaodong</creator><creator>Chen, Dongliang</creator><general>IOP Publishing</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2290-1198</orcidid><orcidid>https://orcid.org/0000-0002-0835-0684</orcidid><orcidid>https://orcid.org/0000-0001-5904-3409</orcidid></search><sort><creationdate>20190703</creationdate><title>Pressure-induced phase transitions and structural evolution across the insulator-metal transition in bulk and nanoscale BiFeO3</title><author>Guo, Zhiying ; Xing, Haiying ; Wang, Yan ; Jia, Quanjie ; Zheng, Zhijian ; Gong, Yu ; Yang, Dongliang ; Li, Haijing ; Hao, Xinyu ; Dong, Juncai ; Li, Yanchun ; Li, Xiaodong ; Chen, Dongliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i257t-d15444bad0dd7d9a6e1d3271198889c21ccb6652b30654deb2e3c9e88b4b64953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>high pressure</topic><topic>insulator-metal transition</topic><topic>multiferroic BiFeO</topic><topic>structural transformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Zhiying</creatorcontrib><creatorcontrib>Xing, Haiying</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Jia, Quanjie</creatorcontrib><creatorcontrib>Zheng, Zhijian</creatorcontrib><creatorcontrib>Gong, Yu</creatorcontrib><creatorcontrib>Yang, Dongliang</creatorcontrib><creatorcontrib>Li, Haijing</creatorcontrib><creatorcontrib>Hao, Xinyu</creatorcontrib><creatorcontrib>Dong, Juncai</creatorcontrib><creatorcontrib>Li, Yanchun</creatorcontrib><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Chen, Dongliang</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Zhiying</au><au>Xing, Haiying</au><au>Wang, Yan</au><au>Jia, Quanjie</au><au>Zheng, Zhijian</au><au>Gong, Yu</au><au>Yang, Dongliang</au><au>Li, Haijing</au><au>Hao, Xinyu</au><au>Dong, Juncai</au><au>Li, Yanchun</au><au>Li, Xiaodong</au><au>Chen, Dongliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pressure-induced phase transitions and structural evolution across the insulator-metal transition in bulk and nanoscale BiFeO3</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2019-07-03</date><risdate>2019</risdate><volume>31</volume><issue>26</issue><spage>265404</spage><epage>265404</epage><pages>265404-265404</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>The pressure-induced phase-transition sequences and structural evolution across the insulator-metal transition (IMT) in multiferroic BiFeO3 still remain unclear. Here we use a combination of high-pressure XRD, XAFS experiment and first principle calculation to investigate the pressure-derived structural transformations and structure-related properties in bulk and nanoscale BiFeO3 up to 55 GPa. A new Imma structure of BiFeO3 has been discovered in the pressure range of 48-52 GPa, which presents ferromagnetic (FM) metallic properties and therefore plays a key role in the IMT. Local structure study reveals that the Bi3+ cation gradually shifts toward the centrosymmetric position in BiO12 cluster during IMT. Besides, the detailed structural information of post-perovskite Cmcm phase has also been determined and thus the complete phase sequence up to 60 GPa is obtained. Our research provides a structural origin of the IMT and a new way to understand the FM release in BiFeO3 system.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-648X/ab1469</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2290-1198</orcidid><orcidid>https://orcid.org/0000-0002-0835-0684</orcidid><orcidid>https://orcid.org/0000-0001-5904-3409</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2019-07, Vol.31 (26), p.265404-265404
issn 0953-8984
1361-648X
language eng
recordid cdi_proquest_miscellaneous_2200777999
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects high pressure
insulator-metal transition
multiferroic BiFeO
structural transformation
title Pressure-induced phase transitions and structural evolution across the insulator-metal transition in bulk and nanoscale BiFeO3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pressure-induced%20phase%20transitions%20and%20structural%20evolution%20across%20the%20insulator-metal%20transition%20in%20bulk%20and%20nanoscale%20BiFeO3&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Guo,%20Zhiying&rft.date=2019-07-03&rft.volume=31&rft.issue=26&rft.spage=265404&rft.epage=265404&rft.pages=265404-265404&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ab1469&rft_dat=%3Cproquest_iop_j%3E2200777999%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2200777999&rft_id=info:pmid/&rfr_iscdi=true