Asymmetric 3D Elastic–Plastic Strain‐Modulated Electron Energy Structure in Monolayer Graphene by Laser Shocking
Graphene has a great potential to replace silicon in prospective semiconductor industries due to its outstanding electronic and transport properties; nonetheless, its lack of energy bandgap is a substantial limitation for practical applications. To date, straining graphene to break its lattice symme...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2019-05, Vol.31 (19), p.e1900597-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 19 |
container_start_page | e1900597 |
container_title | Advanced materials (Weinheim) |
container_volume | 31 |
creator | Motlag, Maithilee Kumar, Prashant Hu, Kevin Y. Jin, Shengyu Li, Ji Shao, Jiayi Yi, Xuan Lin, Yen‐Hsiang Walrath, Jenna C. Tong, Lei Huang, Xinyu Goldman, Rachel S. Ye, Lei Cheng, Gary J. |
description | Graphene has a great potential to replace silicon in prospective semiconductor industries due to its outstanding electronic and transport properties; nonetheless, its lack of energy bandgap is a substantial limitation for practical applications. To date, straining graphene to break its lattice symmetry is perhaps the most efficient approach toward realizing bandgap tunability in graphene. However, due to the weak lattice deformation induced by uniaxial or in‐plane shear strain, most strained graphene studies have yielded bandgaps |
doi_str_mv | 10.1002/adma.201900597 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2200773752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220621237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4397-f58eacb1d8510e6fcf8d629e49dd8d6f67d51a82422660a2b80aad9c82ed397f3</originalsourceid><addsrcrecordid>eNqF0cFu1DAQBmALgehSuHJElrhwyTKeJE58XLVLQdoVSIVz5LUnbUpiL3aiKrc-AhJv2CfBqy1F4sLJI-ubXyP9jL0WsBQA-F7bQS8RhAIoVfWELUSJIitAlU_ZAlReZkoW9Ql7EeMNACgJ8jk7yUFhoSpcsHEV52GgMXSG5-d83es4dub-7teX48Qvx6A7d3_3c-vt1OuRbEJkxuAdXzsKV_OBTGacAvHO8a13vtczBX4R9P6aHPHdzDc6pp_La2--d-7qJXvW6j7Sq4f3lH37sP569jHbfL74dLbaZKbIVZW1ZU3a7IStSwEkW9PWVqKiQlmbplZWthS6xgJRStC4q0Frq0yNZNN-m5-yd8fcffA_JopjM3TRUN9rR36KDSJAVeVViYm-_Yfe-Cm4dF1SCBIF5lVSy6MywccYqG32oRt0mBsBzaGP5tBH89hHWnjzEDvtBrKP_E8BCagjuO16mv8T16zOt6u_4b8BEnOZrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220621237</pqid></control><display><type>article</type><title>Asymmetric 3D Elastic–Plastic Strain‐Modulated Electron Energy Structure in Monolayer Graphene by Laser Shocking</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Motlag, Maithilee ; Kumar, Prashant ; Hu, Kevin Y. ; Jin, Shengyu ; Li, Ji ; Shao, Jiayi ; Yi, Xuan ; Lin, Yen‐Hsiang ; Walrath, Jenna C. ; Tong, Lei ; Huang, Xinyu ; Goldman, Rachel S. ; Ye, Lei ; Cheng, Gary J.</creator><creatorcontrib>Motlag, Maithilee ; Kumar, Prashant ; Hu, Kevin Y. ; Jin, Shengyu ; Li, Ji ; Shao, Jiayi ; Yi, Xuan ; Lin, Yen‐Hsiang ; Walrath, Jenna C. ; Tong, Lei ; Huang, Xinyu ; Goldman, Rachel S. ; Ye, Lei ; Cheng, Gary J.</creatorcontrib><description>Graphene has a great potential to replace silicon in prospective semiconductor industries due to its outstanding electronic and transport properties; nonetheless, its lack of energy bandgap is a substantial limitation for practical applications. To date, straining graphene to break its lattice symmetry is perhaps the most efficient approach toward realizing bandgap tunability in graphene. However, due to the weak lattice deformation induced by uniaxial or in‐plane shear strain, most strained graphene studies have yielded bandgaps <1 eV. In this work, a modulated inhomogeneous local asymmetric elastic–plastic straining is reported that utilizes GPa‐level laser shocking at a high strain rate (dε/dt) ≈ 106–107 s−1, with excellent formability, inducing tunable bandgaps in graphene of up to 2.1 eV, as determined by scanning tunneling spectroscopy. High‐resolution imaging and Raman spectroscopy reveal strain‐induced modifications to the atomic and electronic structure in graphene and first‐principles simulations predict the measured bandgap openings. Laser shock modulation of semimetallic graphene to a semiconducting material with controllable bandgap has the potential to benefit the electronic and optoelectronic industries.
Both the bandgap structure and the Fermi level of monolayer graphene are modulated using an easy and effective optomechanical method. Laser‐shock‐induced 3D nanoshaping enables an asymmetric elastic–plastic straining of graphene, resulting in a wide graphene bandgap of over 2.1 eV and a wide Fermi level adjustment range of 0.6 eV.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201900597</identifier><identifier>PMID: 30924972</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Atomic structure ; bandgap engineering ; Electron energy ; Electronic structure ; Energy gap ; Graphene ; High strain rate ; Lasers ; Materials science ; Optoelectronics ; optomechanical 3D straining ; Plastic deformation ; Raman spectroscopy ; Shear strain ; single‐layer graphene ; Spectrum analysis ; Transport properties</subject><ispartof>Advanced materials (Weinheim), 2019-05, Vol.31 (19), p.e1900597-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4397-f58eacb1d8510e6fcf8d629e49dd8d6f67d51a82422660a2b80aad9c82ed397f3</citedby><cites>FETCH-LOGICAL-c4397-f58eacb1d8510e6fcf8d629e49dd8d6f67d51a82422660a2b80aad9c82ed397f3</cites><orcidid>0000-0002-1184-2946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201900597$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201900597$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30924972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Motlag, Maithilee</creatorcontrib><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Hu, Kevin Y.</creatorcontrib><creatorcontrib>Jin, Shengyu</creatorcontrib><creatorcontrib>Li, Ji</creatorcontrib><creatorcontrib>Shao, Jiayi</creatorcontrib><creatorcontrib>Yi, Xuan</creatorcontrib><creatorcontrib>Lin, Yen‐Hsiang</creatorcontrib><creatorcontrib>Walrath, Jenna C.</creatorcontrib><creatorcontrib>Tong, Lei</creatorcontrib><creatorcontrib>Huang, Xinyu</creatorcontrib><creatorcontrib>Goldman, Rachel S.</creatorcontrib><creatorcontrib>Ye, Lei</creatorcontrib><creatorcontrib>Cheng, Gary J.</creatorcontrib><title>Asymmetric 3D Elastic–Plastic Strain‐Modulated Electron Energy Structure in Monolayer Graphene by Laser Shocking</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Graphene has a great potential to replace silicon in prospective semiconductor industries due to its outstanding electronic and transport properties; nonetheless, its lack of energy bandgap is a substantial limitation for practical applications. To date, straining graphene to break its lattice symmetry is perhaps the most efficient approach toward realizing bandgap tunability in graphene. However, due to the weak lattice deformation induced by uniaxial or in‐plane shear strain, most strained graphene studies have yielded bandgaps <1 eV. In this work, a modulated inhomogeneous local asymmetric elastic–plastic straining is reported that utilizes GPa‐level laser shocking at a high strain rate (dε/dt) ≈ 106–107 s−1, with excellent formability, inducing tunable bandgaps in graphene of up to 2.1 eV, as determined by scanning tunneling spectroscopy. High‐resolution imaging and Raman spectroscopy reveal strain‐induced modifications to the atomic and electronic structure in graphene and first‐principles simulations predict the measured bandgap openings. Laser shock modulation of semimetallic graphene to a semiconducting material with controllable bandgap has the potential to benefit the electronic and optoelectronic industries.
Both the bandgap structure and the Fermi level of monolayer graphene are modulated using an easy and effective optomechanical method. Laser‐shock‐induced 3D nanoshaping enables an asymmetric elastic–plastic straining of graphene, resulting in a wide graphene bandgap of over 2.1 eV and a wide Fermi level adjustment range of 0.6 eV.</description><subject>Atomic structure</subject><subject>bandgap engineering</subject><subject>Electron energy</subject><subject>Electronic structure</subject><subject>Energy gap</subject><subject>Graphene</subject><subject>High strain rate</subject><subject>Lasers</subject><subject>Materials science</subject><subject>Optoelectronics</subject><subject>optomechanical 3D straining</subject><subject>Plastic deformation</subject><subject>Raman spectroscopy</subject><subject>Shear strain</subject><subject>single‐layer graphene</subject><subject>Spectrum analysis</subject><subject>Transport properties</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqF0cFu1DAQBmALgehSuHJElrhwyTKeJE58XLVLQdoVSIVz5LUnbUpiL3aiKrc-AhJv2CfBqy1F4sLJI-ubXyP9jL0WsBQA-F7bQS8RhAIoVfWELUSJIitAlU_ZAlReZkoW9Ql7EeMNACgJ8jk7yUFhoSpcsHEV52GgMXSG5-d83es4dub-7teX48Qvx6A7d3_3c-vt1OuRbEJkxuAdXzsKV_OBTGacAvHO8a13vtczBX4R9P6aHPHdzDc6pp_La2--d-7qJXvW6j7Sq4f3lH37sP569jHbfL74dLbaZKbIVZW1ZU3a7IStSwEkW9PWVqKiQlmbplZWthS6xgJRStC4q0Frq0yNZNN-m5-yd8fcffA_JopjM3TRUN9rR36KDSJAVeVViYm-_Yfe-Cm4dF1SCBIF5lVSy6MywccYqG32oRt0mBsBzaGP5tBH89hHWnjzEDvtBrKP_E8BCagjuO16mv8T16zOt6u_4b8BEnOZrg</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Motlag, Maithilee</creator><creator>Kumar, Prashant</creator><creator>Hu, Kevin Y.</creator><creator>Jin, Shengyu</creator><creator>Li, Ji</creator><creator>Shao, Jiayi</creator><creator>Yi, Xuan</creator><creator>Lin, Yen‐Hsiang</creator><creator>Walrath, Jenna C.</creator><creator>Tong, Lei</creator><creator>Huang, Xinyu</creator><creator>Goldman, Rachel S.</creator><creator>Ye, Lei</creator><creator>Cheng, Gary J.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1184-2946</orcidid></search><sort><creationdate>201905</creationdate><title>Asymmetric 3D Elastic–Plastic Strain‐Modulated Electron Energy Structure in Monolayer Graphene by Laser Shocking</title><author>Motlag, Maithilee ; Kumar, Prashant ; Hu, Kevin Y. ; Jin, Shengyu ; Li, Ji ; Shao, Jiayi ; Yi, Xuan ; Lin, Yen‐Hsiang ; Walrath, Jenna C. ; Tong, Lei ; Huang, Xinyu ; Goldman, Rachel S. ; Ye, Lei ; Cheng, Gary J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4397-f58eacb1d8510e6fcf8d629e49dd8d6f67d51a82422660a2b80aad9c82ed397f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic structure</topic><topic>bandgap engineering</topic><topic>Electron energy</topic><topic>Electronic structure</topic><topic>Energy gap</topic><topic>Graphene</topic><topic>High strain rate</topic><topic>Lasers</topic><topic>Materials science</topic><topic>Optoelectronics</topic><topic>optomechanical 3D straining</topic><topic>Plastic deformation</topic><topic>Raman spectroscopy</topic><topic>Shear strain</topic><topic>single‐layer graphene</topic><topic>Spectrum analysis</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motlag, Maithilee</creatorcontrib><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Hu, Kevin Y.</creatorcontrib><creatorcontrib>Jin, Shengyu</creatorcontrib><creatorcontrib>Li, Ji</creatorcontrib><creatorcontrib>Shao, Jiayi</creatorcontrib><creatorcontrib>Yi, Xuan</creatorcontrib><creatorcontrib>Lin, Yen‐Hsiang</creatorcontrib><creatorcontrib>Walrath, Jenna C.</creatorcontrib><creatorcontrib>Tong, Lei</creatorcontrib><creatorcontrib>Huang, Xinyu</creatorcontrib><creatorcontrib>Goldman, Rachel S.</creatorcontrib><creatorcontrib>Ye, Lei</creatorcontrib><creatorcontrib>Cheng, Gary J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motlag, Maithilee</au><au>Kumar, Prashant</au><au>Hu, Kevin Y.</au><au>Jin, Shengyu</au><au>Li, Ji</au><au>Shao, Jiayi</au><au>Yi, Xuan</au><au>Lin, Yen‐Hsiang</au><au>Walrath, Jenna C.</au><au>Tong, Lei</au><au>Huang, Xinyu</au><au>Goldman, Rachel S.</au><au>Ye, Lei</au><au>Cheng, Gary J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric 3D Elastic–Plastic Strain‐Modulated Electron Energy Structure in Monolayer Graphene by Laser Shocking</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-05</date><risdate>2019</risdate><volume>31</volume><issue>19</issue><spage>e1900597</spage><epage>n/a</epage><pages>e1900597-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Graphene has a great potential to replace silicon in prospective semiconductor industries due to its outstanding electronic and transport properties; nonetheless, its lack of energy bandgap is a substantial limitation for practical applications. To date, straining graphene to break its lattice symmetry is perhaps the most efficient approach toward realizing bandgap tunability in graphene. However, due to the weak lattice deformation induced by uniaxial or in‐plane shear strain, most strained graphene studies have yielded bandgaps <1 eV. In this work, a modulated inhomogeneous local asymmetric elastic–plastic straining is reported that utilizes GPa‐level laser shocking at a high strain rate (dε/dt) ≈ 106–107 s−1, with excellent formability, inducing tunable bandgaps in graphene of up to 2.1 eV, as determined by scanning tunneling spectroscopy. High‐resolution imaging and Raman spectroscopy reveal strain‐induced modifications to the atomic and electronic structure in graphene and first‐principles simulations predict the measured bandgap openings. Laser shock modulation of semimetallic graphene to a semiconducting material with controllable bandgap has the potential to benefit the electronic and optoelectronic industries.
Both the bandgap structure and the Fermi level of monolayer graphene are modulated using an easy and effective optomechanical method. Laser‐shock‐induced 3D nanoshaping enables an asymmetric elastic–plastic straining of graphene, resulting in a wide graphene bandgap of over 2.1 eV and a wide Fermi level adjustment range of 0.6 eV.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30924972</pmid><doi>10.1002/adma.201900597</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1184-2946</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2019-05, Vol.31 (19), p.e1900597-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2200773752 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Atomic structure bandgap engineering Electron energy Electronic structure Energy gap Graphene High strain rate Lasers Materials science Optoelectronics optomechanical 3D straining Plastic deformation Raman spectroscopy Shear strain single‐layer graphene Spectrum analysis Transport properties |
title | Asymmetric 3D Elastic–Plastic Strain‐Modulated Electron Energy Structure in Monolayer Graphene by Laser Shocking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A08%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%203D%20Elastic%E2%80%93Plastic%20Strain%E2%80%90Modulated%20Electron%20Energy%20Structure%20in%20Monolayer%20Graphene%20by%20Laser%20Shocking&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Motlag,%20Maithilee&rft.date=2019-05&rft.volume=31&rft.issue=19&rft.spage=e1900597&rft.epage=n/a&rft.pages=e1900597-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201900597&rft_dat=%3Cproquest_cross%3E2220621237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220621237&rft_id=info:pmid/30924972&rfr_iscdi=true |