Identification, evolution and alternative splicing profile analysis of the splicing factor 30 (SPF30) in plant species
In eukaryotes, one pre-mRNA can generate multiple mRNA transcripts by alternative splicing (AS), which expands transcriptome and proteome diversity. Splicing factor 30 (SPF30), also known as survival motor neuron domain containing protein 1 (SMNDC1), is a spliceosomal protein that plays an essential...
Gespeichert in:
Veröffentlicht in: | Planta 2019-06, Vol.249 (6), p.1997-2014 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2014 |
---|---|
container_issue | 6 |
container_start_page | 1997 |
container_title | Planta |
container_volume | 249 |
creator | Zhang, Di Yang, Jing-Fang Gao, Bei Liu, Tie-Yuan Hao, Ge-Fei Yang, Guang-Fu Fu, Li-Jun Chen, Mo-Xian Zhang, Jianhua |
description | In eukaryotes, one pre-mRNA can generate multiple mRNA transcripts by alternative splicing (AS), which expands transcriptome and proteome diversity. Splicing factor 30 (SPF30), also known as survival motor neuron domain containing protein 1 (SMNDC1), is a spliceosomal protein that plays an essential role in spliceosomal assembly. Although SPF30 genes have been well characterised in human and yeast, little is known about their homologues in plants. Here, we report the genomewide identification and phylogenetic analysis of SPF30 genes in the plant kingdom. In total, 82 SPF30 genes were found in 64 plant species from algae to land plants. Alternative transcripts were found in many SPF30 genes and splicing profile analysis revealed that the second intron in SPF30 genome is frequently associated with AS events and contributed to the birth of novel exons in a few SPF30 members. In addition, different conserved sequences were observed at these putative splice sites among moss, monocots and dicots, respectively. Our findings will facilitate further functional characterization of plant SPF30 genes as putative splicing factors. |
doi_str_mv | 10.1007/s00425-019-03146-x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2197332348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48702110</jstor_id><sourcerecordid>48702110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-495bf53430bb654cb0508fb2a07a8f61a10ceba01fc88b732a7b5e813d9976383</originalsourceid><addsrcrecordid>eNp9kVFrFDEUhYModlv9A4IS8KWCoze5yWTyKMXWQkFBfQ5JNqlZsjPrZGZp_73ZTq3ig0-5cL5zcpNDyAsG7xiAel8ABJcNMN0AMtE2N4_IignkDQfRPSYrgDqDRnlEjkvZAFRRqafkCEGD0EKuyP5yHfopxeTtlIb-LQ37Ic-Hkdp-TW2ewthXaR9o2eXkU39Nd-MQUw4VsPm2pEKHSKcffwHR-mkYKQI9_frlHOENTT3dZdtPlQk-hfKMPIk2l_D8_jwh388_fjv71Fx9vrg8-3DVeNRqaoSWLkoUCM61UngHErrouAVlu9gyy8AHZ4FF33VOIbfKydAxXGutWuzwhJwuuXXnn3Mok9mm4kOuu4RhLoYzrRA5igP6-h90M8z17fmOahkwJttK8YXy41DKGKLZjWlrx1vDwBxaMUsrprZi7loxN9X06j56dtuwfrD8rqECuAClSv11GP_c_d_Yl4trU-p3P6SKTgFnDPAXIOahKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196101156</pqid></control><display><type>article</type><title>Identification, evolution and alternative splicing profile analysis of the splicing factor 30 (SPF30) in plant species</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Di ; Yang, Jing-Fang ; Gao, Bei ; Liu, Tie-Yuan ; Hao, Ge-Fei ; Yang, Guang-Fu ; Fu, Li-Jun ; Chen, Mo-Xian ; Zhang, Jianhua</creator><creatorcontrib>Zhang, Di ; Yang, Jing-Fang ; Gao, Bei ; Liu, Tie-Yuan ; Hao, Ge-Fei ; Yang, Guang-Fu ; Fu, Li-Jun ; Chen, Mo-Xian ; Zhang, Jianhua</creatorcontrib><description>In eukaryotes, one pre-mRNA can generate multiple mRNA transcripts by alternative splicing (AS), which expands transcriptome and proteome diversity. Splicing factor 30 (SPF30), also known as survival motor neuron domain containing protein 1 (SMNDC1), is a spliceosomal protein that plays an essential role in spliceosomal assembly. Although SPF30 genes have been well characterised in human and yeast, little is known about their homologues in plants. Here, we report the genomewide identification and phylogenetic analysis of SPF30 genes in the plant kingdom. In total, 82 SPF30 genes were found in 64 plant species from algae to land plants. Alternative transcripts were found in many SPF30 genes and splicing profile analysis revealed that the second intron in SPF30 genome is frequently associated with AS events and contributed to the birth of novel exons in a few SPF30 members. In addition, different conserved sequences were observed at these putative splice sites among moss, monocots and dicots, respectively. Our findings will facilitate further functional characterization of plant SPF30 genes as putative splicing factors.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-019-03146-x</identifier><identifier>PMID: 30904945</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>Agriculture ; Algae ; Alternative splicing ; Alternative Splicing - genetics ; Biological Evolution ; Biomedical and Life Sciences ; Conserved Sequence ; Ecology ; Eukaryotes ; Exons ; Exons - genetics ; Flowers & plants ; Forestry ; Gene expression ; Genes ; Genomes ; Homology ; Introns - genetics ; Life Sciences ; ORIGINAL ARTICLE ; Phylogenetics ; Phylogeny ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Sciences ; Plant species ; Plants - genetics ; Proteins ; Proteomes ; RNA Precursors - genetics ; RNA Splicing Factors - genetics ; RNA Splicing Factors - metabolism ; RNA, Messenger - genetics ; RNA, Plant - genetics ; Spliceosomes - genetics ; Spliceosomes - metabolism ; Splicing ; Splicing factors ; Yeast ; Yeasts</subject><ispartof>Planta, 2019-06, Vol.249 (6), p.1997-2014</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Planta is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-495bf53430bb654cb0508fb2a07a8f61a10ceba01fc88b732a7b5e813d9976383</citedby><cites>FETCH-LOGICAL-c397t-495bf53430bb654cb0508fb2a07a8f61a10ceba01fc88b732a7b5e813d9976383</cites><orcidid>0000-0003-3942-5797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48702110$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48702110$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27903,27904,41467,42536,51297,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30904945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Yang, Jing-Fang</creatorcontrib><creatorcontrib>Gao, Bei</creatorcontrib><creatorcontrib>Liu, Tie-Yuan</creatorcontrib><creatorcontrib>Hao, Ge-Fei</creatorcontrib><creatorcontrib>Yang, Guang-Fu</creatorcontrib><creatorcontrib>Fu, Li-Jun</creatorcontrib><creatorcontrib>Chen, Mo-Xian</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><title>Identification, evolution and alternative splicing profile analysis of the splicing factor 30 (SPF30) in plant species</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>In eukaryotes, one pre-mRNA can generate multiple mRNA transcripts by alternative splicing (AS), which expands transcriptome and proteome diversity. Splicing factor 30 (SPF30), also known as survival motor neuron domain containing protein 1 (SMNDC1), is a spliceosomal protein that plays an essential role in spliceosomal assembly. Although SPF30 genes have been well characterised in human and yeast, little is known about their homologues in plants. Here, we report the genomewide identification and phylogenetic analysis of SPF30 genes in the plant kingdom. In total, 82 SPF30 genes were found in 64 plant species from algae to land plants. Alternative transcripts were found in many SPF30 genes and splicing profile analysis revealed that the second intron in SPF30 genome is frequently associated with AS events and contributed to the birth of novel exons in a few SPF30 members. In addition, different conserved sequences were observed at these putative splice sites among moss, monocots and dicots, respectively. Our findings will facilitate further functional characterization of plant SPF30 genes as putative splicing factors.</description><subject>Agriculture</subject><subject>Algae</subject><subject>Alternative splicing</subject><subject>Alternative Splicing - genetics</subject><subject>Biological Evolution</subject><subject>Biomedical and Life Sciences</subject><subject>Conserved Sequence</subject><subject>Ecology</subject><subject>Eukaryotes</subject><subject>Exons</subject><subject>Exons - genetics</subject><subject>Flowers & plants</subject><subject>Forestry</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genomes</subject><subject>Homology</subject><subject>Introns - genetics</subject><subject>Life Sciences</subject><subject>ORIGINAL ARTICLE</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Plant species</subject><subject>Plants - genetics</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>RNA Precursors - genetics</subject><subject>RNA Splicing Factors - genetics</subject><subject>RNA Splicing Factors - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Plant - genetics</subject><subject>Spliceosomes - genetics</subject><subject>Spliceosomes - metabolism</subject><subject>Splicing</subject><subject>Splicing factors</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kVFrFDEUhYModlv9A4IS8KWCoze5yWTyKMXWQkFBfQ5JNqlZsjPrZGZp_73ZTq3ig0-5cL5zcpNDyAsG7xiAel8ABJcNMN0AMtE2N4_IignkDQfRPSYrgDqDRnlEjkvZAFRRqafkCEGD0EKuyP5yHfopxeTtlIb-LQ37Ic-Hkdp-TW2ewthXaR9o2eXkU39Nd-MQUw4VsPm2pEKHSKcffwHR-mkYKQI9_frlHOENTT3dZdtPlQk-hfKMPIk2l_D8_jwh388_fjv71Fx9vrg8-3DVeNRqaoSWLkoUCM61UngHErrouAVlu9gyy8AHZ4FF33VOIbfKydAxXGutWuzwhJwuuXXnn3Mok9mm4kOuu4RhLoYzrRA5igP6-h90M8z17fmOahkwJttK8YXy41DKGKLZjWlrx1vDwBxaMUsrprZi7loxN9X06j56dtuwfrD8rqECuAClSv11GP_c_d_Yl4trU-p3P6SKTgFnDPAXIOahKg</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Zhang, Di</creator><creator>Yang, Jing-Fang</creator><creator>Gao, Bei</creator><creator>Liu, Tie-Yuan</creator><creator>Hao, Ge-Fei</creator><creator>Yang, Guang-Fu</creator><creator>Fu, Li-Jun</creator><creator>Chen, Mo-Xian</creator><creator>Zhang, Jianhua</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3942-5797</orcidid></search><sort><creationdate>20190601</creationdate><title>Identification, evolution and alternative splicing profile analysis of the splicing factor 30 (SPF30) in plant species</title><author>Zhang, Di ; Yang, Jing-Fang ; Gao, Bei ; Liu, Tie-Yuan ; Hao, Ge-Fei ; Yang, Guang-Fu ; Fu, Li-Jun ; Chen, Mo-Xian ; Zhang, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-495bf53430bb654cb0508fb2a07a8f61a10ceba01fc88b732a7b5e813d9976383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agriculture</topic><topic>Algae</topic><topic>Alternative splicing</topic><topic>Alternative Splicing - genetics</topic><topic>Biological Evolution</topic><topic>Biomedical and Life Sciences</topic><topic>Conserved Sequence</topic><topic>Ecology</topic><topic>Eukaryotes</topic><topic>Exons</topic><topic>Exons - genetics</topic><topic>Flowers & plants</topic><topic>Forestry</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genomes</topic><topic>Homology</topic><topic>Introns - genetics</topic><topic>Life Sciences</topic><topic>ORIGINAL ARTICLE</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Plant species</topic><topic>Plants - genetics</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>RNA Precursors - genetics</topic><topic>RNA Splicing Factors - genetics</topic><topic>RNA Splicing Factors - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Plant - genetics</topic><topic>Spliceosomes - genetics</topic><topic>Spliceosomes - metabolism</topic><topic>Splicing</topic><topic>Splicing factors</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Yang, Jing-Fang</creatorcontrib><creatorcontrib>Gao, Bei</creatorcontrib><creatorcontrib>Liu, Tie-Yuan</creatorcontrib><creatorcontrib>Hao, Ge-Fei</creatorcontrib><creatorcontrib>Yang, Guang-Fu</creatorcontrib><creatorcontrib>Fu, Li-Jun</creatorcontrib><creatorcontrib>Chen, Mo-Xian</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Di</au><au>Yang, Jing-Fang</au><au>Gao, Bei</au><au>Liu, Tie-Yuan</au><au>Hao, Ge-Fei</au><au>Yang, Guang-Fu</au><au>Fu, Li-Jun</au><au>Chen, Mo-Xian</au><au>Zhang, Jianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification, evolution and alternative splicing profile analysis of the splicing factor 30 (SPF30) in plant species</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>249</volume><issue>6</issue><spage>1997</spage><epage>2014</epage><pages>1997-2014</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>In eukaryotes, one pre-mRNA can generate multiple mRNA transcripts by alternative splicing (AS), which expands transcriptome and proteome diversity. Splicing factor 30 (SPF30), also known as survival motor neuron domain containing protein 1 (SMNDC1), is a spliceosomal protein that plays an essential role in spliceosomal assembly. Although SPF30 genes have been well characterised in human and yeast, little is known about their homologues in plants. Here, we report the genomewide identification and phylogenetic analysis of SPF30 genes in the plant kingdom. In total, 82 SPF30 genes were found in 64 plant species from algae to land plants. Alternative transcripts were found in many SPF30 genes and splicing profile analysis revealed that the second intron in SPF30 genome is frequently associated with AS events and contributed to the birth of novel exons in a few SPF30 members. In addition, different conserved sequences were observed at these putative splice sites among moss, monocots and dicots, respectively. Our findings will facilitate further functional characterization of plant SPF30 genes as putative splicing factors.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><pmid>30904945</pmid><doi>10.1007/s00425-019-03146-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3942-5797</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0935 |
ispartof | Planta, 2019-06, Vol.249 (6), p.1997-2014 |
issn | 0032-0935 1432-2048 |
language | eng |
recordid | cdi_proquest_miscellaneous_2197332348 |
source | Jstor Complete Legacy; MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Agriculture Algae Alternative splicing Alternative Splicing - genetics Biological Evolution Biomedical and Life Sciences Conserved Sequence Ecology Eukaryotes Exons Exons - genetics Flowers & plants Forestry Gene expression Genes Genomes Homology Introns - genetics Life Sciences ORIGINAL ARTICLE Phylogenetics Phylogeny Plant Proteins - genetics Plant Proteins - metabolism Plant Sciences Plant species Plants - genetics Proteins Proteomes RNA Precursors - genetics RNA Splicing Factors - genetics RNA Splicing Factors - metabolism RNA, Messenger - genetics RNA, Plant - genetics Spliceosomes - genetics Spliceosomes - metabolism Splicing Splicing factors Yeast Yeasts |
title | Identification, evolution and alternative splicing profile analysis of the splicing factor 30 (SPF30) in plant species |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A23%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification,%20evolution%20and%20alternative%20splicing%20profile%20analysis%20of%20the%20splicing%20factor%2030%20(SPF30)%20in%20plant%20species&rft.jtitle=Planta&rft.au=Zhang,%20Di&rft.date=2019-06-01&rft.volume=249&rft.issue=6&rft.spage=1997&rft.epage=2014&rft.pages=1997-2014&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-019-03146-x&rft_dat=%3Cjstor_proqu%3E48702110%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2196101156&rft_id=info:pmid/30904945&rft_jstor_id=48702110&rfr_iscdi=true |