Dual knockdown of Galectin-8 and its glycosylated ligand, the activated leukocyte cell adhesion molecule (ALCAM/CD166), synergistically delays in vivo breast cancer growth

Galectin-8 (Gal-8), a ‘tandem-repeat’-type galectin, has been described as a modulator of cellular functions including adhesion, spreading, growth arrest, apoptosis, pathogen recognition, autophagy, and immunomodulation. We have previously shown that activated leukocyte cell adhesion molecule (ALCAM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Molecular cell research 2019-08, Vol.1866 (8), p.1338-1352
Hauptverfasser: Ferragut, Fátima, Cagnoni, Alejandro J., Colombo, Lucas L., Sánchez Terrero, Clara, Wolfenstein-Todel, Carlota, Troncoso, María F., Vanzulli, Silvia I., Rabinovich, Gabriel A., Mariño, Karina V., Elola, María T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Galectin-8 (Gal-8), a ‘tandem-repeat’-type galectin, has been described as a modulator of cellular functions including adhesion, spreading, growth arrest, apoptosis, pathogen recognition, autophagy, and immunomodulation. We have previously shown that activated leukocyte cell adhesion molecule (ALCAM), also known as CD166, serves as a receptor for endogenous Gal-8. ALCAM is a member of the immunoglobulin superfamily involved in cell-cell adhesion through homophilic (ALCAM-ALCAM) and heterophilic (i.e. ALCAM-CD6) interactions in different tissues. Here we investigated the physiologic relevance of ALCAM-Gal-8 association and glycosylation-dependent mechanisms governing these interactions. We found that silencing of ALCAM in MDA-MB-231 triple negative breast cancer cells decreases cell adhesion and migration onto Gal-8-coated surfaces in a glycan-dependent fashion. Remarkably, either Gal-8 or ALCAM silencing also disrupted cell-cell adhesion, and led to reduced tumor growth in a murine model of triple negative breast cancer. Moreover, structural characterization of endogenous ALCAM N-glycosylation showed abundant permissive structures for Gal-8 binding. Importantly, we also found that cell sialylation controls Gal-8-mediated cell adhesion. Altogether, these findings demonstrate a central role of either ALCAM or Gal-8 (or both) in controlling triple negative breast cancer. [Display omitted] •ALCAM silencing decreases in vitro cell adhesion and migration onto Gal-8.•Surface ALCAM establishes glycan-dependent cell interactions with Gal-8.•Either Gal-8 or ALCAM silencing attenuates cell-cell aggregation.•In mouse xenografts, Gal-8 and ALCAM silencing synergistically slow down tumor growth.
ISSN:0167-4889
1879-2596
DOI:10.1016/j.bbamcr.2019.03.010