Numerical convective schemes based on accurate computation of space derivatives

A numerical procedure is developed for the solution of partial differential equations for the convection of scalar variables. An important feature of this approach is that the space derivatives are computed with very high accuracy by means of Fourier transform methods. By this method a forward march...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 1973-01, Vol.13 (1), p.100-113
1. Verfasser: Gazdag, Jenö
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue 1
container_start_page 100
container_title Journal of computational physics
container_volume 13
creator Gazdag, Jenö
description A numerical procedure is developed for the solution of partial differential equations for the convection of scalar variables. An important feature of this approach is that the space derivatives are computed with very high accuracy by means of Fourier transform methods. By this method a forward marching problem involves discrete time steps but space derivatives are accurate within the limit to which a distribution can be defined on a finite set of meshpoints. Expressions are derived for the amplitude error and phase error, which are verified by computer experiments for the two-dimensional case. This numerical method is applied to the solution of Burgers' equation. The accuracy of the numerical solutions indicates that the method is well suited for the solution of nonlinear partial differential equations with other than periodic boundary conditions.
doi_str_mv 10.1016/0021-9991(73)90128-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21970060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0021999173901289</els_id><sourcerecordid>21970060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-4bf9d96653dc6f0586b974ed6312072a12361f4a3183e18945de20b8a5801a653</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMoOI7-AxddiS6qN0mbJhtBBl8wOBtdhzS9xUhfJm3Bf2_qiEtXgcs5H-QQck7hmgIVNwCMpkopelnwKwWUyVQdkBUFBSkrqDgkqz_kmJyE8AEAMs_kiuxepha9s6ZJbN_NaEc3YxLsO7YYktIErJK-S4y1kzcjRqgdptGMLh77OgmDsZhUcWE2ixlOyVFtmoBnv--avD3cv26e0u3u8Xlzt00t5_mYZmWtKiVEzisrasilKFWRYSU4ZVAwQxkXtM4Mp5IjlSrLK2RQSpNLoCZqa3Kx3x18_zlhGHXrgsWmMR32U9CMqgJAQASzPWh9H4LHWg_etcZ_aQp6qaeXNHpJowuuf-ppFbXbvYbxE7NDr4N12FmsnI-RdNW7_we-AWJ8dh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21970060</pqid></control><display><type>article</type><title>Numerical convective schemes based on accurate computation of space derivatives</title><source>Elsevier ScienceDirect Journals</source><creator>Gazdag, Jenö</creator><creatorcontrib>Gazdag, Jenö</creatorcontrib><description>A numerical procedure is developed for the solution of partial differential equations for the convection of scalar variables. An important feature of this approach is that the space derivatives are computed with very high accuracy by means of Fourier transform methods. By this method a forward marching problem involves discrete time steps but space derivatives are accurate within the limit to which a distribution can be defined on a finite set of meshpoints. Expressions are derived for the amplitude error and phase error, which are verified by computer experiments for the two-dimensional case. This numerical method is applied to the solution of Burgers' equation. The accuracy of the numerical solutions indicates that the method is well suited for the solution of nonlinear partial differential equations with other than periodic boundary conditions.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/0021-9991(73)90128-9</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of computational physics, 1973-01, Vol.13 (1), p.100-113</ispartof><rights>1973</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-4bf9d96653dc6f0586b974ed6312072a12361f4a3183e18945de20b8a5801a653</citedby><cites>FETCH-LOGICAL-c335t-4bf9d96653dc6f0586b974ed6312072a12361f4a3183e18945de20b8a5801a653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0021999173901289$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Gazdag, Jenö</creatorcontrib><title>Numerical convective schemes based on accurate computation of space derivatives</title><title>Journal of computational physics</title><description>A numerical procedure is developed for the solution of partial differential equations for the convection of scalar variables. An important feature of this approach is that the space derivatives are computed with very high accuracy by means of Fourier transform methods. By this method a forward marching problem involves discrete time steps but space derivatives are accurate within the limit to which a distribution can be defined on a finite set of meshpoints. Expressions are derived for the amplitude error and phase error, which are verified by computer experiments for the two-dimensional case. This numerical method is applied to the solution of Burgers' equation. The accuracy of the numerical solutions indicates that the method is well suited for the solution of nonlinear partial differential equations with other than periodic boundary conditions.</description><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1973</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAURoMoOI7-AxddiS6qN0mbJhtBBl8wOBtdhzS9xUhfJm3Bf2_qiEtXgcs5H-QQck7hmgIVNwCMpkopelnwKwWUyVQdkBUFBSkrqDgkqz_kmJyE8AEAMs_kiuxepha9s6ZJbN_NaEc3YxLsO7YYktIErJK-S4y1kzcjRqgdptGMLh77OgmDsZhUcWE2ixlOyVFtmoBnv--avD3cv26e0u3u8Xlzt00t5_mYZmWtKiVEzisrasilKFWRYSU4ZVAwQxkXtM4Mp5IjlSrLK2RQSpNLoCZqa3Kx3x18_zlhGHXrgsWmMR32U9CMqgJAQASzPWh9H4LHWg_etcZ_aQp6qaeXNHpJowuuf-ppFbXbvYbxE7NDr4N12FmsnI-RdNW7_we-AWJ8dh0</recordid><startdate>19730101</startdate><enddate>19730101</enddate><creator>Gazdag, Jenö</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19730101</creationdate><title>Numerical convective schemes based on accurate computation of space derivatives</title><author>Gazdag, Jenö</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-4bf9d96653dc6f0586b974ed6312072a12361f4a3183e18945de20b8a5801a653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1973</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gazdag, Jenö</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gazdag, Jenö</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical convective schemes based on accurate computation of space derivatives</atitle><jtitle>Journal of computational physics</jtitle><date>1973-01-01</date><risdate>1973</risdate><volume>13</volume><issue>1</issue><spage>100</spage><epage>113</epage><pages>100-113</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A numerical procedure is developed for the solution of partial differential equations for the convection of scalar variables. An important feature of this approach is that the space derivatives are computed with very high accuracy by means of Fourier transform methods. By this method a forward marching problem involves discrete time steps but space derivatives are accurate within the limit to which a distribution can be defined on a finite set of meshpoints. Expressions are derived for the amplitude error and phase error, which are verified by computer experiments for the two-dimensional case. This numerical method is applied to the solution of Burgers' equation. The accuracy of the numerical solutions indicates that the method is well suited for the solution of nonlinear partial differential equations with other than periodic boundary conditions.</abstract><pub>Elsevier Inc</pub><doi>10.1016/0021-9991(73)90128-9</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 1973-01, Vol.13 (1), p.100-113
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_21970060
source Elsevier ScienceDirect Journals
title Numerical convective schemes based on accurate computation of space derivatives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20convective%20schemes%20based%20on%20accurate%20computation%20of%20space%20derivatives&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Gazdag,%20Jen%C3%B6&rft.date=1973-01-01&rft.volume=13&rft.issue=1&rft.spage=100&rft.epage=113&rft.pages=100-113&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/0021-9991(73)90128-9&rft_dat=%3Cproquest_cross%3E21970060%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21970060&rft_id=info:pmid/&rft_els_id=0021999173901289&rfr_iscdi=true