Highly efficient capture of circulating tumor cells with low background signals by using pyramidal microcavity array

This report demonstrates that a microfluidic device with integrated silicon filter exhibits outstanding capture efficiency and superior enrichment purity when employed to separate tumor cells from whole blood samples. We fabricate the silicon filter with pyramidal microcavity array (MCA) by microfab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2019-07, Vol.1060, p.133-141
Hauptverfasser: Yin, Jiaxiang, Mou, Lei, Yang, Mingzhu, Zou, Wenwu, Du, Chang, Zhang, Wei, Jiang, Xingyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue
container_start_page 133
container_title Analytica chimica acta
container_volume 1060
creator Yin, Jiaxiang
Mou, Lei
Yang, Mingzhu
Zou, Wenwu
Du, Chang
Zhang, Wei
Jiang, Xingyu
description This report demonstrates that a microfluidic device with integrated silicon filter exhibits outstanding capture efficiency and superior enrichment purity when employed to separate tumor cells from whole blood samples. We fabricate the silicon filter with pyramidal microcavity array (MCA) by microfabrication. We design the structure of the cavity to efficiently enrich tumor cells, while allowing hematologic cells to deform and pass through. The capture efficiency of MCF-7, SW620 and Hela cells spiked in 1 mL of whole blood are approximately 80%. Unwanted white blood cells (WBCs) trapped on the MCA are below 0.003%. In addition, this microfluidic device successfully identifies circulating tumor cells (CTCs) in 5 of 6 patients’ blood samples, with a range of 5–86 CTCs per mL. These results reveal that the disposable microfluidic device can effectively enrich tumor cells with different sizes and various morphologies, while maintaining high capture efficiency and purity. Therefore, this label-free technique can serve as a versatile platform to facilitate CTCs analysis in diverse biochemical applications. [Display omitted] •This pyramidal microcavity array can recover spiked tumor cells from the whole blood sample with >83% capture efficiency and 0.0015–0.003% background signals.•The microfluidic device utilizes only 1 mL of blood.•The blood sample does not require any pretreatment.•Trapped cells on the stiff silicon filter can be imaged and counted directly.
doi_str_mv 10.1016/j.aca.2019.01.054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2196530325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003267019301394</els_id><sourcerecordid>2196530325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-ed3bfc9a917c64e3fb596643a977dc6513eb8a9e89c24951824bb46a7bb08e3b3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EosPAA7BBltiwSeqfxInFClW0RarUDawt27mZekjiwT-t8vY4msKCBSvL8neude6H0HtKakqouDzW2uqaESprQmvSNi_QjvYdrxrOmpdoRwjhFRMduUBvYjyWK6OkeY0uOJGEcdbtULp1h4dpxTCOzjpYErb6lHIA7EdsXbB50sktB5zy7AO2ME0RP7n0gCf_hI22Pw_B52XA0R0WXd7MinPcAqc16NkNesKzs8Fb_ejSinUIen2LXo2FhXfP5x79uP76_eq2uru_-Xb15a6yvKepgoGb0UotaWdFA3w0rRSi4Vp23WBFSzmYXkvopWWNbGnPGmMaoTtjSA_c8D36dJ57Cv5XhpjU7OJWQS_gc1SMStFywllb0I__oEefw9ZIMUZ7KRgv_-0RPVOlUIwBRnUKbtZhVZSoTYk6qqJEbUoUoaooKZkPz5OzmWH4m_jjoACfzwCUVTw6CCpuJiwMLoBNavDuP-N_A_hrnVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218962351</pqid></control><display><type>article</type><title>Highly efficient capture of circulating tumor cells with low background signals by using pyramidal microcavity array</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Yin, Jiaxiang ; Mou, Lei ; Yang, Mingzhu ; Zou, Wenwu ; Du, Chang ; Zhang, Wei ; Jiang, Xingyu</creator><creatorcontrib>Yin, Jiaxiang ; Mou, Lei ; Yang, Mingzhu ; Zou, Wenwu ; Du, Chang ; Zhang, Wei ; Jiang, Xingyu</creatorcontrib><description>This report demonstrates that a microfluidic device with integrated silicon filter exhibits outstanding capture efficiency and superior enrichment purity when employed to separate tumor cells from whole blood samples. We fabricate the silicon filter with pyramidal microcavity array (MCA) by microfabrication. We design the structure of the cavity to efficiently enrich tumor cells, while allowing hematologic cells to deform and pass through. The capture efficiency of MCF-7, SW620 and Hela cells spiked in 1 mL of whole blood are approximately 80%. Unwanted white blood cells (WBCs) trapped on the MCA are below 0.003%. In addition, this microfluidic device successfully identifies circulating tumor cells (CTCs) in 5 of 6 patients’ blood samples, with a range of 5–86 CTCs per mL. These results reveal that the disposable microfluidic device can effectively enrich tumor cells with different sizes and various morphologies, while maintaining high capture efficiency and purity. Therefore, this label-free technique can serve as a versatile platform to facilitate CTCs analysis in diverse biochemical applications. [Display omitted] •This pyramidal microcavity array can recover spiked tumor cells from the whole blood sample with &gt;83% capture efficiency and 0.0015–0.003% background signals.•The microfluidic device utilizes only 1 mL of blood.•The blood sample does not require any pretreatment.•Trapped cells on the stiff silicon filter can be imaged and counted directly.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2019.01.054</identifier><identifier>PMID: 30902327</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Blood circulation ; Cell Separation ; CTCs ; Deformation ; Efficiency ; Efficient capture ; Enrichment ; Equipment Design ; Humans ; Leukocytes ; Low background signals ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic devices ; Microfluidics ; Microscopy, Fluorescence ; Morphology ; Neoplastic Cells, Circulating - pathology ; Purity ; Pyramidal MCA ; Silicon ; Silicon - chemistry ; Tumor cells ; Tumor Cells, Cultured ; Tumors</subject><ispartof>Analytica chimica acta, 2019-07, Vol.1060, p.133-141</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Jul 4, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-ed3bfc9a917c64e3fb596643a977dc6513eb8a9e89c24951824bb46a7bb08e3b3</citedby><cites>FETCH-LOGICAL-c381t-ed3bfc9a917c64e3fb596643a977dc6513eb8a9e89c24951824bb46a7bb08e3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aca.2019.01.054$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30902327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Jiaxiang</creatorcontrib><creatorcontrib>Mou, Lei</creatorcontrib><creatorcontrib>Yang, Mingzhu</creatorcontrib><creatorcontrib>Zou, Wenwu</creatorcontrib><creatorcontrib>Du, Chang</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Jiang, Xingyu</creatorcontrib><title>Highly efficient capture of circulating tumor cells with low background signals by using pyramidal microcavity array</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>This report demonstrates that a microfluidic device with integrated silicon filter exhibits outstanding capture efficiency and superior enrichment purity when employed to separate tumor cells from whole blood samples. We fabricate the silicon filter with pyramidal microcavity array (MCA) by microfabrication. We design the structure of the cavity to efficiently enrich tumor cells, while allowing hematologic cells to deform and pass through. The capture efficiency of MCF-7, SW620 and Hela cells spiked in 1 mL of whole blood are approximately 80%. Unwanted white blood cells (WBCs) trapped on the MCA are below 0.003%. In addition, this microfluidic device successfully identifies circulating tumor cells (CTCs) in 5 of 6 patients’ blood samples, with a range of 5–86 CTCs per mL. These results reveal that the disposable microfluidic device can effectively enrich tumor cells with different sizes and various morphologies, while maintaining high capture efficiency and purity. Therefore, this label-free technique can serve as a versatile platform to facilitate CTCs analysis in diverse biochemical applications. [Display omitted] •This pyramidal microcavity array can recover spiked tumor cells from the whole blood sample with &gt;83% capture efficiency and 0.0015–0.003% background signals.•The microfluidic device utilizes only 1 mL of blood.•The blood sample does not require any pretreatment.•Trapped cells on the stiff silicon filter can be imaged and counted directly.</description><subject>Blood circulation</subject><subject>Cell Separation</subject><subject>CTCs</subject><subject>Deformation</subject><subject>Efficiency</subject><subject>Efficient capture</subject><subject>Enrichment</subject><subject>Equipment Design</subject><subject>Humans</subject><subject>Leukocytes</subject><subject>Low background signals</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Microscopy, Fluorescence</subject><subject>Morphology</subject><subject>Neoplastic Cells, Circulating - pathology</subject><subject>Purity</subject><subject>Pyramidal MCA</subject><subject>Silicon</subject><subject>Silicon - chemistry</subject><subject>Tumor cells</subject><subject>Tumor Cells, Cultured</subject><subject>Tumors</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EosPAA7BBltiwSeqfxInFClW0RarUDawt27mZekjiwT-t8vY4msKCBSvL8neude6H0HtKakqouDzW2uqaESprQmvSNi_QjvYdrxrOmpdoRwjhFRMduUBvYjyWK6OkeY0uOJGEcdbtULp1h4dpxTCOzjpYErb6lHIA7EdsXbB50sktB5zy7AO2ME0RP7n0gCf_hI22Pw_B52XA0R0WXd7MinPcAqc16NkNesKzs8Fb_ejSinUIen2LXo2FhXfP5x79uP76_eq2uru_-Xb15a6yvKepgoGb0UotaWdFA3w0rRSi4Vp23WBFSzmYXkvopWWNbGnPGmMaoTtjSA_c8D36dJ57Cv5XhpjU7OJWQS_gc1SMStFywllb0I__oEefw9ZIMUZ7KRgv_-0RPVOlUIwBRnUKbtZhVZSoTYk6qqJEbUoUoaooKZkPz5OzmWH4m_jjoACfzwCUVTw6CCpuJiwMLoBNavDuP-N_A_hrnVw</recordid><startdate>20190704</startdate><enddate>20190704</enddate><creator>Yin, Jiaxiang</creator><creator>Mou, Lei</creator><creator>Yang, Mingzhu</creator><creator>Zou, Wenwu</creator><creator>Du, Chang</creator><creator>Zhang, Wei</creator><creator>Jiang, Xingyu</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20190704</creationdate><title>Highly efficient capture of circulating tumor cells with low background signals by using pyramidal microcavity array</title><author>Yin, Jiaxiang ; Mou, Lei ; Yang, Mingzhu ; Zou, Wenwu ; Du, Chang ; Zhang, Wei ; Jiang, Xingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-ed3bfc9a917c64e3fb596643a977dc6513eb8a9e89c24951824bb46a7bb08e3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Blood circulation</topic><topic>Cell Separation</topic><topic>CTCs</topic><topic>Deformation</topic><topic>Efficiency</topic><topic>Efficient capture</topic><topic>Enrichment</topic><topic>Equipment Design</topic><topic>Humans</topic><topic>Leukocytes</topic><topic>Low background signals</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Microscopy, Fluorescence</topic><topic>Morphology</topic><topic>Neoplastic Cells, Circulating - pathology</topic><topic>Purity</topic><topic>Pyramidal MCA</topic><topic>Silicon</topic><topic>Silicon - chemistry</topic><topic>Tumor cells</topic><topic>Tumor Cells, Cultured</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Jiaxiang</creatorcontrib><creatorcontrib>Mou, Lei</creatorcontrib><creatorcontrib>Yang, Mingzhu</creatorcontrib><creatorcontrib>Zou, Wenwu</creatorcontrib><creatorcontrib>Du, Chang</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Jiang, Xingyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Jiaxiang</au><au>Mou, Lei</au><au>Yang, Mingzhu</au><au>Zou, Wenwu</au><au>Du, Chang</au><au>Zhang, Wei</au><au>Jiang, Xingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly efficient capture of circulating tumor cells with low background signals by using pyramidal microcavity array</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2019-07-04</date><risdate>2019</risdate><volume>1060</volume><spage>133</spage><epage>141</epage><pages>133-141</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><abstract>This report demonstrates that a microfluidic device with integrated silicon filter exhibits outstanding capture efficiency and superior enrichment purity when employed to separate tumor cells from whole blood samples. We fabricate the silicon filter with pyramidal microcavity array (MCA) by microfabrication. We design the structure of the cavity to efficiently enrich tumor cells, while allowing hematologic cells to deform and pass through. The capture efficiency of MCF-7, SW620 and Hela cells spiked in 1 mL of whole blood are approximately 80%. Unwanted white blood cells (WBCs) trapped on the MCA are below 0.003%. In addition, this microfluidic device successfully identifies circulating tumor cells (CTCs) in 5 of 6 patients’ blood samples, with a range of 5–86 CTCs per mL. These results reveal that the disposable microfluidic device can effectively enrich tumor cells with different sizes and various morphologies, while maintaining high capture efficiency and purity. Therefore, this label-free technique can serve as a versatile platform to facilitate CTCs analysis in diverse biochemical applications. [Display omitted] •This pyramidal microcavity array can recover spiked tumor cells from the whole blood sample with &gt;83% capture efficiency and 0.0015–0.003% background signals.•The microfluidic device utilizes only 1 mL of blood.•The blood sample does not require any pretreatment.•Trapped cells on the stiff silicon filter can be imaged and counted directly.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30902327</pmid><doi>10.1016/j.aca.2019.01.054</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2670
ispartof Analytica chimica acta, 2019-07, Vol.1060, p.133-141
issn 0003-2670
1873-4324
language eng
recordid cdi_proquest_miscellaneous_2196530325
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Blood circulation
Cell Separation
CTCs
Deformation
Efficiency
Efficient capture
Enrichment
Equipment Design
Humans
Leukocytes
Low background signals
Microfluidic Analytical Techniques - instrumentation
Microfluidic devices
Microfluidics
Microscopy, Fluorescence
Morphology
Neoplastic Cells, Circulating - pathology
Purity
Pyramidal MCA
Silicon
Silicon - chemistry
Tumor cells
Tumor Cells, Cultured
Tumors
title Highly efficient capture of circulating tumor cells with low background signals by using pyramidal microcavity array
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A45%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20efficient%20capture%20of%20circulating%20tumor%20cells%20with%20low%20background%20signals%20by%20using%20pyramidal%20microcavity%20array&rft.jtitle=Analytica%20chimica%20acta&rft.au=Yin,%20Jiaxiang&rft.date=2019-07-04&rft.volume=1060&rft.spage=133&rft.epage=141&rft.pages=133-141&rft.issn=0003-2670&rft.eissn=1873-4324&rft_id=info:doi/10.1016/j.aca.2019.01.054&rft_dat=%3Cproquest_cross%3E2196530325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218962351&rft_id=info:pmid/30902327&rft_els_id=S0003267019301394&rfr_iscdi=true