The best predictor of ischemic coronary stenosis: subtended myocardial volume, machine learning–based FFRCT, or high-risk plaque features?

Objectives The present study aimed to compare the diagnostic performance of a machine learning (ML)–based FFR CT algorithm, quantified subtended myocardial volume, and high-risk plaque features for predicting if a coronary stenosis is hemodynamically significant, with reference to FFR ICA . Methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European radiology 2019-07, Vol.29 (7), p.3647-3657
Hauptverfasser: Yu, Mengmeng, Lu, Zhigang, Shen, Chengxing, Yan, Jing, Wang, Yining, Lu, Bin, Zhang, Jiayin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3657
container_issue 7
container_start_page 3647
container_title European radiology
container_volume 29
creator Yu, Mengmeng
Lu, Zhigang
Shen, Chengxing
Yan, Jing
Wang, Yining
Lu, Bin
Zhang, Jiayin
description Objectives The present study aimed to compare the diagnostic performance of a machine learning (ML)–based FFR CT algorithm, quantified subtended myocardial volume, and high-risk plaque features for predicting if a coronary stenosis is hemodynamically significant, with reference to FFR ICA . Methods Patients who underwent both CCTA and FFR ICA measurement within 2 weeks were retrospectively included. ML-based FFR CT , volume of subtended myocardium (V sub ), percentage of subtended myocardium volume versus total myocardium volume (V ratio ), high-risk plaque features, minimal lumen diameter (MLD), and minimal lumen area (MLA) along with other parameters were recorded. Lesions with FFR ICA ≤ 0.8 were considered to be functionally significant. Results One hundred eighty patients with 208 lesions were included. The lesion length (LL), diameter stenosis, area stenosis, plaque burden, V sub , V ratio , V ratio /MLD, V ratio /MLA, and LL/MLD 4 were all significantly longer or larger in the group of FFR ICA ≤ 0.8 while smaller minimal lumen area, MLD, and FFR CT value were noted. The AUC of FFR CT + V ratio /MLD was significantly better than that of FFR CT alone (0.935 versus 0.873, p  
doi_str_mv 10.1007/s00330-019-06139-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2196528610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2195743535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-e477f0937706aed0b2a686c5a27e0ed1ab89ab20b8b49925f4e6be3a146197193</originalsourceid><addsrcrecordid>eNp9kc-KFDEQxoMoOI6-gKeAFw-btfKnOx0vIoOzCguCjOeQTldPZ-3ujEn3wt58AG--oU9i1hEED1KHqsPv-6iqj5DnHC45gH6VAaQEBtwwqLk0TDwgG66kYBwa9ZBswMiGaWPUY_Ik5xsAMFzpDfl-GJC2mBd6StgFv8REY09D9gNOwVMfU5xduqN5wTnmkF_TvLZl7rCj0130LnXBjfQ2juuEF3Ryfggz0hFdmsN8_PntR-tyYff7T7vDBS32QzgOLIX8hZ5G93VF2qNb1oT5zVPyqHdjxmd_-pZ83r877N6z649XH3Zvr5lXvFkYKq37cpDWUDvsoBWubmpfOaERsOOubYxrBbRNq4wRVa-wblE6rmpuNDdyS16efU8plgXyYqdyMI6jmzGu2Qpu6ko0NYeCvvgHvYlrmst291SllaxKbYk4Uz7FnBP29pTCVN5mOdj7gOw5IFsCsr8DsqKI5FmUCzwfMf21_o_qF7vilXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2195743535</pqid></control><display><type>article</type><title>The best predictor of ischemic coronary stenosis: subtended myocardial volume, machine learning–based FFRCT, or high-risk plaque features?</title><source>SpringerLink Journals</source><creator>Yu, Mengmeng ; Lu, Zhigang ; Shen, Chengxing ; Yan, Jing ; Wang, Yining ; Lu, Bin ; Zhang, Jiayin</creator><creatorcontrib>Yu, Mengmeng ; Lu, Zhigang ; Shen, Chengxing ; Yan, Jing ; Wang, Yining ; Lu, Bin ; Zhang, Jiayin</creatorcontrib><description>Objectives The present study aimed to compare the diagnostic performance of a machine learning (ML)–based FFR CT algorithm, quantified subtended myocardial volume, and high-risk plaque features for predicting if a coronary stenosis is hemodynamically significant, with reference to FFR ICA . Methods Patients who underwent both CCTA and FFR ICA measurement within 2 weeks were retrospectively included. ML-based FFR CT , volume of subtended myocardium (V sub ), percentage of subtended myocardium volume versus total myocardium volume (V ratio ), high-risk plaque features, minimal lumen diameter (MLD), and minimal lumen area (MLA) along with other parameters were recorded. Lesions with FFR ICA ≤ 0.8 were considered to be functionally significant. Results One hundred eighty patients with 208 lesions were included. The lesion length (LL), diameter stenosis, area stenosis, plaque burden, V sub , V ratio , V ratio /MLD, V ratio /MLA, and LL/MLD 4 were all significantly longer or larger in the group of FFR ICA ≤ 0.8 while smaller minimal lumen area, MLD, and FFR CT value were noted. The AUC of FFR CT + V ratio /MLD was significantly better than that of FFR CT alone (0.935 versus 0.873, p  &lt; 0.001). High-risk plaque features failed to show difference between functionally significant and insignificant groups. V ratio /MLD-complemented ML-based FFR CT for “gray zone” lesions with FFR CT value ranged from 0.7 to 0.8 and the combined use of these two parameters yielded the best diagnostic performance (86.5%, 180/208). Conclusions ML-based FFR CT simulation and V ratio /MLD both provide incremental value over CCTA-derived diameter stenosis and high-risk plaque features for predicting hemodynamically significant lesions. V ratio /MLD is more accurate than ML-based FFR CT for lesions with simulated FFR CT value from 0.7 to 0.8. Key Points • Machine learning–based FFR CT and subtended myocardium volume both performed well for predicting hemodynamically significant coronary stenosis. • Subtended myocardium volume was more accurate than machine learning–based FFR CT for “gray zone” lesions with simulated FFR value from 0.7 to 0.8. • CT-derived high-risk plaque features failed to correctly identify hemodynamically significant stenosis.</description><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-019-06139-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial intelligence ; Cardiac ; Computer simulation ; Diagnostic Radiology ; Diagnostic systems ; Imaging ; Internal Medicine ; Interventional Radiology ; Ischemia ; Learning algorithms ; Lesions ; Machine learning ; Medicine ; Medicine &amp; Public Health ; Myocardium ; Neuroradiology ; Parameters ; Patients ; Performance prediction ; Radiology ; Risk ; Stenosis ; Ultrasound</subject><ispartof>European radiology, 2019-07, Vol.29 (7), p.3647-3657</ispartof><rights>European Society of Radiology 2019</rights><rights>European Radiology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-e477f0937706aed0b2a686c5a27e0ed1ab89ab20b8b49925f4e6be3a146197193</citedby><cites>FETCH-LOGICAL-c418t-e477f0937706aed0b2a686c5a27e0ed1ab89ab20b8b49925f4e6be3a146197193</cites><orcidid>0000-0001-7383-7571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00330-019-06139-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00330-019-06139-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yu, Mengmeng</creatorcontrib><creatorcontrib>Lu, Zhigang</creatorcontrib><creatorcontrib>Shen, Chengxing</creatorcontrib><creatorcontrib>Yan, Jing</creatorcontrib><creatorcontrib>Wang, Yining</creatorcontrib><creatorcontrib>Lu, Bin</creatorcontrib><creatorcontrib>Zhang, Jiayin</creatorcontrib><title>The best predictor of ischemic coronary stenosis: subtended myocardial volume, machine learning–based FFRCT, or high-risk plaque features?</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><description>Objectives The present study aimed to compare the diagnostic performance of a machine learning (ML)–based FFR CT algorithm, quantified subtended myocardial volume, and high-risk plaque features for predicting if a coronary stenosis is hemodynamically significant, with reference to FFR ICA . Methods Patients who underwent both CCTA and FFR ICA measurement within 2 weeks were retrospectively included. ML-based FFR CT , volume of subtended myocardium (V sub ), percentage of subtended myocardium volume versus total myocardium volume (V ratio ), high-risk plaque features, minimal lumen diameter (MLD), and minimal lumen area (MLA) along with other parameters were recorded. Lesions with FFR ICA ≤ 0.8 were considered to be functionally significant. Results One hundred eighty patients with 208 lesions were included. The lesion length (LL), diameter stenosis, area stenosis, plaque burden, V sub , V ratio , V ratio /MLD, V ratio /MLA, and LL/MLD 4 were all significantly longer or larger in the group of FFR ICA ≤ 0.8 while smaller minimal lumen area, MLD, and FFR CT value were noted. The AUC of FFR CT + V ratio /MLD was significantly better than that of FFR CT alone (0.935 versus 0.873, p  &lt; 0.001). High-risk plaque features failed to show difference between functionally significant and insignificant groups. V ratio /MLD-complemented ML-based FFR CT for “gray zone” lesions with FFR CT value ranged from 0.7 to 0.8 and the combined use of these two parameters yielded the best diagnostic performance (86.5%, 180/208). Conclusions ML-based FFR CT simulation and V ratio /MLD both provide incremental value over CCTA-derived diameter stenosis and high-risk plaque features for predicting hemodynamically significant lesions. V ratio /MLD is more accurate than ML-based FFR CT for lesions with simulated FFR CT value from 0.7 to 0.8. Key Points • Machine learning–based FFR CT and subtended myocardium volume both performed well for predicting hemodynamically significant coronary stenosis. • Subtended myocardium volume was more accurate than machine learning–based FFR CT for “gray zone” lesions with simulated FFR value from 0.7 to 0.8. • CT-derived high-risk plaque features failed to correctly identify hemodynamically significant stenosis.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Cardiac</subject><subject>Computer simulation</subject><subject>Diagnostic Radiology</subject><subject>Diagnostic systems</subject><subject>Imaging</subject><subject>Internal Medicine</subject><subject>Interventional Radiology</subject><subject>Ischemia</subject><subject>Learning algorithms</subject><subject>Lesions</subject><subject>Machine learning</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Myocardium</subject><subject>Neuroradiology</subject><subject>Parameters</subject><subject>Patients</subject><subject>Performance prediction</subject><subject>Radiology</subject><subject>Risk</subject><subject>Stenosis</subject><subject>Ultrasound</subject><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc-KFDEQxoMoOI6-gKeAFw-btfKnOx0vIoOzCguCjOeQTldPZ-3ujEn3wt58AG--oU9i1hEED1KHqsPv-6iqj5DnHC45gH6VAaQEBtwwqLk0TDwgG66kYBwa9ZBswMiGaWPUY_Ik5xsAMFzpDfl-GJC2mBd6StgFv8REY09D9gNOwVMfU5xduqN5wTnmkF_TvLZl7rCj0130LnXBjfQ2juuEF3Ryfggz0hFdmsN8_PntR-tyYff7T7vDBS32QzgOLIX8hZ5G93VF2qNb1oT5zVPyqHdjxmd_-pZ83r877N6z649XH3Zvr5lXvFkYKq37cpDWUDvsoBWubmpfOaERsOOubYxrBbRNq4wRVa-wblE6rmpuNDdyS16efU8plgXyYqdyMI6jmzGu2Qpu6ko0NYeCvvgHvYlrmst291SllaxKbYk4Uz7FnBP29pTCVN5mOdj7gOw5IFsCsr8DsqKI5FmUCzwfMf21_o_qF7vilXA</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Yu, Mengmeng</creator><creator>Lu, Zhigang</creator><creator>Shen, Chengxing</creator><creator>Yan, Jing</creator><creator>Wang, Yining</creator><creator>Lu, Bin</creator><creator>Zhang, Jiayin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7383-7571</orcidid></search><sort><creationdate>20190701</creationdate><title>The best predictor of ischemic coronary stenosis: subtended myocardial volume, machine learning–based FFRCT, or high-risk plaque features?</title><author>Yu, Mengmeng ; Lu, Zhigang ; Shen, Chengxing ; Yan, Jing ; Wang, Yining ; Lu, Bin ; Zhang, Jiayin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-e477f0937706aed0b2a686c5a27e0ed1ab89ab20b8b49925f4e6be3a146197193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Cardiac</topic><topic>Computer simulation</topic><topic>Diagnostic Radiology</topic><topic>Diagnostic systems</topic><topic>Imaging</topic><topic>Internal Medicine</topic><topic>Interventional Radiology</topic><topic>Ischemia</topic><topic>Learning algorithms</topic><topic>Lesions</topic><topic>Machine learning</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Myocardium</topic><topic>Neuroradiology</topic><topic>Parameters</topic><topic>Patients</topic><topic>Performance prediction</topic><topic>Radiology</topic><topic>Risk</topic><topic>Stenosis</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Mengmeng</creatorcontrib><creatorcontrib>Lu, Zhigang</creatorcontrib><creatorcontrib>Shen, Chengxing</creatorcontrib><creatorcontrib>Yan, Jing</creatorcontrib><creatorcontrib>Wang, Yining</creatorcontrib><creatorcontrib>Lu, Bin</creatorcontrib><creatorcontrib>Zhang, Jiayin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Mengmeng</au><au>Lu, Zhigang</au><au>Shen, Chengxing</au><au>Yan, Jing</au><au>Wang, Yining</au><au>Lu, Bin</au><au>Zhang, Jiayin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The best predictor of ischemic coronary stenosis: subtended myocardial volume, machine learning–based FFRCT, or high-risk plaque features?</atitle><jtitle>European radiology</jtitle><stitle>Eur Radiol</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>29</volume><issue>7</issue><spage>3647</spage><epage>3657</epage><pages>3647-3657</pages><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>Objectives The present study aimed to compare the diagnostic performance of a machine learning (ML)–based FFR CT algorithm, quantified subtended myocardial volume, and high-risk plaque features for predicting if a coronary stenosis is hemodynamically significant, with reference to FFR ICA . Methods Patients who underwent both CCTA and FFR ICA measurement within 2 weeks were retrospectively included. ML-based FFR CT , volume of subtended myocardium (V sub ), percentage of subtended myocardium volume versus total myocardium volume (V ratio ), high-risk plaque features, minimal lumen diameter (MLD), and minimal lumen area (MLA) along with other parameters were recorded. Lesions with FFR ICA ≤ 0.8 were considered to be functionally significant. Results One hundred eighty patients with 208 lesions were included. The lesion length (LL), diameter stenosis, area stenosis, plaque burden, V sub , V ratio , V ratio /MLD, V ratio /MLA, and LL/MLD 4 were all significantly longer or larger in the group of FFR ICA ≤ 0.8 while smaller minimal lumen area, MLD, and FFR CT value were noted. The AUC of FFR CT + V ratio /MLD was significantly better than that of FFR CT alone (0.935 versus 0.873, p  &lt; 0.001). High-risk plaque features failed to show difference between functionally significant and insignificant groups. V ratio /MLD-complemented ML-based FFR CT for “gray zone” lesions with FFR CT value ranged from 0.7 to 0.8 and the combined use of these two parameters yielded the best diagnostic performance (86.5%, 180/208). Conclusions ML-based FFR CT simulation and V ratio /MLD both provide incremental value over CCTA-derived diameter stenosis and high-risk plaque features for predicting hemodynamically significant lesions. V ratio /MLD is more accurate than ML-based FFR CT for lesions with simulated FFR CT value from 0.7 to 0.8. Key Points • Machine learning–based FFR CT and subtended myocardium volume both performed well for predicting hemodynamically significant coronary stenosis. • Subtended myocardium volume was more accurate than machine learning–based FFR CT for “gray zone” lesions with simulated FFR value from 0.7 to 0.8. • CT-derived high-risk plaque features failed to correctly identify hemodynamically significant stenosis.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00330-019-06139-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7383-7571</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0938-7994
ispartof European radiology, 2019-07, Vol.29 (7), p.3647-3657
issn 0938-7994
1432-1084
language eng
recordid cdi_proquest_miscellaneous_2196528610
source SpringerLink Journals
subjects Algorithms
Artificial intelligence
Cardiac
Computer simulation
Diagnostic Radiology
Diagnostic systems
Imaging
Internal Medicine
Interventional Radiology
Ischemia
Learning algorithms
Lesions
Machine learning
Medicine
Medicine & Public Health
Myocardium
Neuroradiology
Parameters
Patients
Performance prediction
Radiology
Risk
Stenosis
Ultrasound
title The best predictor of ischemic coronary stenosis: subtended myocardial volume, machine learning–based FFRCT, or high-risk plaque features?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A46%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20best%20predictor%20of%20ischemic%20coronary%20stenosis:%20subtended%20myocardial%20volume,%20machine%20learning%E2%80%93based%20FFRCT,%20or%20high-risk%20plaque%20features?&rft.jtitle=European%20radiology&rft.au=Yu,%20Mengmeng&rft.date=2019-07-01&rft.volume=29&rft.issue=7&rft.spage=3647&rft.epage=3657&rft.pages=3647-3657&rft.issn=0938-7994&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-019-06139-2&rft_dat=%3Cproquest_cross%3E2195743535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2195743535&rft_id=info:pmid/&rfr_iscdi=true