Temperature imaging using a cationic linear fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy

Temperature is one of the most important of the physiological parameters that determine the biological status of living organisms. However, intracellular temperature was not imaged at the single-cell level until recently because of the lack of a molecular thermometer that can be applied to living ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature protocols 2019-04, Vol.14 (4), p.1293-1321
Hauptverfasser: Inada, Noriko, Fukuda, Nanaho, Hayashi, Teruyuki, Uchiyama, Seiichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1321
container_issue 4
container_start_page 1293
container_title Nature protocols
container_volume 14
creator Inada, Noriko
Fukuda, Nanaho
Hayashi, Teruyuki
Uchiyama, Seiichi
description Temperature is one of the most important of the physiological parameters that determine the biological status of living organisms. However, intracellular temperature was not imaged at the single-cell level until recently because of the lack of a molecular thermometer that can be applied to living cells. We have recently developed a method for imaging intracellular temperature using a cationic linear fluorescent polymeric thermometer (FPT) and fluorescence lifetime imaging microscopy (FLIM). The cationic linear FPT exhibits cell permeability in various mammalian cell lines and yeast cells, entering live cells within 10 min of incubation. Intracellular thermometry using the cationic linear FPT and FLIM can be used to image temperature with high temperature resolution (0.3–1.29 °C within a temperature range of 25–35 °C). The diffuse intracellular localization of the cationic linear FPT allows a high spatial resolution (i.e., the light microscope’s diffraction limit, 200 nm), enabling the detection of temperature distributions at the subcellular level. This protocol, including the construction of a calibration curve and intracellular temperature imaging, requires ~14 h. Experience in handling cultured mammalian cells and use of a confocal laser-scanning microscope (CLSM) is required. This protocol describes intracellular temperature imaging with a cationic linear fluorescent polymeric thermometer (FPT). Step-by-step procedures are provided for sensor calibration and imaging by fluorescence lifetime imaging microscopy (FLIM).
doi_str_mv 10.1038/s41596-019-0145-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2196528588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A580380558</galeid><sourcerecordid>A580380558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-3b87ec6abce4dde06b42f0d344856d9357b0e171b74485999c4bcce5550c3f453</originalsourceid><addsrcrecordid>eNp1kt1v1SAYxhujcXP6B3hjmnijF51QoMDlsvixZImJzmtC6dvKUqACTXb866We6fEYDeEj8HuewMtTVc8xOseIiDeJYia7BmFZOmUNf1CdYs5Q03IpH_5c06bFQp5UT1K6RYhy0vHH1QlBEhGM-Gn1_QbcAlHnNUJtnZ6sn-o1baOujc42eGvq2XrQsR7nNURIBnyulzDvHMRymL9CdMFBhlhrP_xBGSjKEbJ1B29nTQzJhGX3tHo06jnBs_v5rPry7u3N5Yfm-uP7q8uL68YwInNDesHBdLo3QIcBUNfTdkQDoVSwbpCE8R4B5rjn246U0tDeGGCMIUNGyshZ9Wrvu8TwbYWUlbPldvOsPYQ1qRbLjrWCCVHQl3-ht2GNvtxuowRjmLfsQE16BmX9GHLUZjNVF0yUj0GMbV7n_6BKG6DUIHgYbdk_Erw-EhQmw12e9JqSuvr86ZjFe3YrZoowqiWWCsedwkht2VD7bKiSDbVlQ_GieXH_uLV3MPxW_ApDAdo9kMqRnyAeXv9_1x_QFcQn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2198551725</pqid></control><display><type>article</type><title>Temperature imaging using a cationic linear fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Inada, Noriko ; Fukuda, Nanaho ; Hayashi, Teruyuki ; Uchiyama, Seiichi</creator><creatorcontrib>Inada, Noriko ; Fukuda, Nanaho ; Hayashi, Teruyuki ; Uchiyama, Seiichi</creatorcontrib><description>Temperature is one of the most important of the physiological parameters that determine the biological status of living organisms. However, intracellular temperature was not imaged at the single-cell level until recently because of the lack of a molecular thermometer that can be applied to living cells. We have recently developed a method for imaging intracellular temperature using a cationic linear fluorescent polymeric thermometer (FPT) and fluorescence lifetime imaging microscopy (FLIM). The cationic linear FPT exhibits cell permeability in various mammalian cell lines and yeast cells, entering live cells within 10 min of incubation. Intracellular thermometry using the cationic linear FPT and FLIM can be used to image temperature with high temperature resolution (0.3–1.29 °C within a temperature range of 25–35 °C). The diffuse intracellular localization of the cationic linear FPT allows a high spatial resolution (i.e., the light microscope’s diffraction limit, 200 nm), enabling the detection of temperature distributions at the subcellular level. This protocol, including the construction of a calibration curve and intracellular temperature imaging, requires ~14 h. Experience in handling cultured mammalian cells and use of a confocal laser-scanning microscope (CLSM) is required. This protocol describes intracellular temperature imaging with a cationic linear fluorescent polymeric thermometer (FPT). Step-by-step procedures are provided for sensor calibration and imaging by fluorescence lifetime imaging microscopy (FLIM).</description><identifier>ISSN: 1754-2189</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/s41596-019-0145-7</identifier><identifier>PMID: 30903107</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Analytical Chemistry ; Animals ; Biological Techniques ; Biomedical and Life Sciences ; Calibration ; Cationic polymerization ; Cell Line ; Cell lines ; Cell permeability ; Cell physiology ; Chlorocebus aethiops ; Computational Biology/Bioinformatics ; COS Cells ; Cytological research ; Design and construction ; Fluorescence ; Fluorescence microscopy ; HEK293 Cells ; HeLa Cells ; High temperature ; Humans ; Image Processing, Computer-Assisted - statistics &amp; numerical data ; Imaging ; Intracellular ; Life Sciences ; Light diffraction ; Localization ; Mammalian cells ; Mammals ; Methods ; Mice ; Microarrays ; Microscopy ; Microscopy, Fluorescence - methods ; Microscopy, Fluorescence - statistics &amp; numerical data ; NIH 3T3 Cells ; Optical Imaging - methods ; Optical Imaging - statistics &amp; numerical data ; Organic Chemistry ; Protocol ; Saccharomyces cerevisiae - ultrastructure ; Spatial discrimination ; Spatial resolution ; T-Lymphocytes - ultrastructure ; Temperature ; Temperature distribution ; Temperature effects ; Temperature measurement ; Temperature requirements ; Thermometers ; Time-Lapse Imaging - methods ; Time-Lapse Imaging - statistics &amp; numerical data ; Yeast ; Yeasts</subject><ispartof>Nature protocols, 2019-04, Vol.14 (4), p.1293-1321</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-3b87ec6abce4dde06b42f0d344856d9357b0e171b74485999c4bcce5550c3f453</citedby><cites>FETCH-LOGICAL-c539t-3b87ec6abce4dde06b42f0d344856d9357b0e171b74485999c4bcce5550c3f453</cites><orcidid>0000-0002-5996-2330 ; 0000-0002-9931-4063 ; 0000-0003-4463-1034 ; 0000-0002-1487-7351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41596-019-0145-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41596-019-0145-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30903107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Inada, Noriko</creatorcontrib><creatorcontrib>Fukuda, Nanaho</creatorcontrib><creatorcontrib>Hayashi, Teruyuki</creatorcontrib><creatorcontrib>Uchiyama, Seiichi</creatorcontrib><title>Temperature imaging using a cationic linear fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>Nat Protoc</addtitle><description>Temperature is one of the most important of the physiological parameters that determine the biological status of living organisms. However, intracellular temperature was not imaged at the single-cell level until recently because of the lack of a molecular thermometer that can be applied to living cells. We have recently developed a method for imaging intracellular temperature using a cationic linear fluorescent polymeric thermometer (FPT) and fluorescence lifetime imaging microscopy (FLIM). The cationic linear FPT exhibits cell permeability in various mammalian cell lines and yeast cells, entering live cells within 10 min of incubation. Intracellular thermometry using the cationic linear FPT and FLIM can be used to image temperature with high temperature resolution (0.3–1.29 °C within a temperature range of 25–35 °C). The diffuse intracellular localization of the cationic linear FPT allows a high spatial resolution (i.e., the light microscope’s diffraction limit, 200 nm), enabling the detection of temperature distributions at the subcellular level. This protocol, including the construction of a calibration curve and intracellular temperature imaging, requires ~14 h. Experience in handling cultured mammalian cells and use of a confocal laser-scanning microscope (CLSM) is required. This protocol describes intracellular temperature imaging with a cationic linear fluorescent polymeric thermometer (FPT). Step-by-step procedures are provided for sensor calibration and imaging by fluorescence lifetime imaging microscopy (FLIM).</description><subject>Analytical Chemistry</subject><subject>Animals</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Calibration</subject><subject>Cationic polymerization</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Cell permeability</subject><subject>Cell physiology</subject><subject>Chlorocebus aethiops</subject><subject>Computational Biology/Bioinformatics</subject><subject>COS Cells</subject><subject>Cytological research</subject><subject>Design and construction</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>High temperature</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - statistics &amp; numerical data</subject><subject>Imaging</subject><subject>Intracellular</subject><subject>Life Sciences</subject><subject>Light diffraction</subject><subject>Localization</subject><subject>Mammalian cells</subject><subject>Mammals</subject><subject>Methods</subject><subject>Mice</subject><subject>Microarrays</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Microscopy, Fluorescence - statistics &amp; numerical data</subject><subject>NIH 3T3 Cells</subject><subject>Optical Imaging - methods</subject><subject>Optical Imaging - statistics &amp; numerical data</subject><subject>Organic Chemistry</subject><subject>Protocol</subject><subject>Saccharomyces cerevisiae - ultrastructure</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>T-Lymphocytes - ultrastructure</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Temperature effects</subject><subject>Temperature measurement</subject><subject>Temperature requirements</subject><subject>Thermometers</subject><subject>Time-Lapse Imaging - methods</subject><subject>Time-Lapse Imaging - statistics &amp; numerical data</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1754-2189</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kt1v1SAYxhujcXP6B3hjmnijF51QoMDlsvixZImJzmtC6dvKUqACTXb866We6fEYDeEj8HuewMtTVc8xOseIiDeJYia7BmFZOmUNf1CdYs5Q03IpH_5c06bFQp5UT1K6RYhy0vHH1QlBEhGM-Gn1_QbcAlHnNUJtnZ6sn-o1baOujc42eGvq2XrQsR7nNURIBnyulzDvHMRymL9CdMFBhlhrP_xBGSjKEbJ1B29nTQzJhGX3tHo06jnBs_v5rPry7u3N5Yfm-uP7q8uL68YwInNDesHBdLo3QIcBUNfTdkQDoVSwbpCE8R4B5rjn246U0tDeGGCMIUNGyshZ9Wrvu8TwbYWUlbPldvOsPYQ1qRbLjrWCCVHQl3-ht2GNvtxuowRjmLfsQE16BmX9GHLUZjNVF0yUj0GMbV7n_6BKG6DUIHgYbdk_Erw-EhQmw12e9JqSuvr86ZjFe3YrZoowqiWWCsedwkht2VD7bKiSDbVlQ_GieXH_uLV3MPxW_ApDAdo9kMqRnyAeXv9_1x_QFcQn</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Inada, Noriko</creator><creator>Fukuda, Nanaho</creator><creator>Hayashi, Teruyuki</creator><creator>Uchiyama, Seiichi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5996-2330</orcidid><orcidid>https://orcid.org/0000-0002-9931-4063</orcidid><orcidid>https://orcid.org/0000-0003-4463-1034</orcidid><orcidid>https://orcid.org/0000-0002-1487-7351</orcidid></search><sort><creationdate>20190401</creationdate><title>Temperature imaging using a cationic linear fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy</title><author>Inada, Noriko ; Fukuda, Nanaho ; Hayashi, Teruyuki ; Uchiyama, Seiichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-3b87ec6abce4dde06b42f0d344856d9357b0e171b74485999c4bcce5550c3f453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical Chemistry</topic><topic>Animals</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Calibration</topic><topic>Cationic polymerization</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Cell permeability</topic><topic>Cell physiology</topic><topic>Chlorocebus aethiops</topic><topic>Computational Biology/Bioinformatics</topic><topic>COS Cells</topic><topic>Cytological research</topic><topic>Design and construction</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>High temperature</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - statistics &amp; numerical data</topic><topic>Imaging</topic><topic>Intracellular</topic><topic>Life Sciences</topic><topic>Light diffraction</topic><topic>Localization</topic><topic>Mammalian cells</topic><topic>Mammals</topic><topic>Methods</topic><topic>Mice</topic><topic>Microarrays</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Microscopy, Fluorescence - statistics &amp; numerical data</topic><topic>NIH 3T3 Cells</topic><topic>Optical Imaging - methods</topic><topic>Optical Imaging - statistics &amp; numerical data</topic><topic>Organic Chemistry</topic><topic>Protocol</topic><topic>Saccharomyces cerevisiae - ultrastructure</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>T-Lymphocytes - ultrastructure</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Temperature effects</topic><topic>Temperature measurement</topic><topic>Temperature requirements</topic><topic>Thermometers</topic><topic>Time-Lapse Imaging - methods</topic><topic>Time-Lapse Imaging - statistics &amp; numerical data</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inada, Noriko</creatorcontrib><creatorcontrib>Fukuda, Nanaho</creatorcontrib><creatorcontrib>Hayashi, Teruyuki</creatorcontrib><creatorcontrib>Uchiyama, Seiichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inada, Noriko</au><au>Fukuda, Nanaho</au><au>Hayashi, Teruyuki</au><au>Uchiyama, Seiichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature imaging using a cationic linear fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><addtitle>Nat Protoc</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>14</volume><issue>4</issue><spage>1293</spage><epage>1321</epage><pages>1293-1321</pages><issn>1754-2189</issn><eissn>1750-2799</eissn><abstract>Temperature is one of the most important of the physiological parameters that determine the biological status of living organisms. However, intracellular temperature was not imaged at the single-cell level until recently because of the lack of a molecular thermometer that can be applied to living cells. We have recently developed a method for imaging intracellular temperature using a cationic linear fluorescent polymeric thermometer (FPT) and fluorescence lifetime imaging microscopy (FLIM). The cationic linear FPT exhibits cell permeability in various mammalian cell lines and yeast cells, entering live cells within 10 min of incubation. Intracellular thermometry using the cationic linear FPT and FLIM can be used to image temperature with high temperature resolution (0.3–1.29 °C within a temperature range of 25–35 °C). The diffuse intracellular localization of the cationic linear FPT allows a high spatial resolution (i.e., the light microscope’s diffraction limit, 200 nm), enabling the detection of temperature distributions at the subcellular level. This protocol, including the construction of a calibration curve and intracellular temperature imaging, requires ~14 h. Experience in handling cultured mammalian cells and use of a confocal laser-scanning microscope (CLSM) is required. This protocol describes intracellular temperature imaging with a cationic linear fluorescent polymeric thermometer (FPT). Step-by-step procedures are provided for sensor calibration and imaging by fluorescence lifetime imaging microscopy (FLIM).</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30903107</pmid><doi>10.1038/s41596-019-0145-7</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-5996-2330</orcidid><orcidid>https://orcid.org/0000-0002-9931-4063</orcidid><orcidid>https://orcid.org/0000-0003-4463-1034</orcidid><orcidid>https://orcid.org/0000-0002-1487-7351</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-2189
ispartof Nature protocols, 2019-04, Vol.14 (4), p.1293-1321
issn 1754-2189
1750-2799
language eng
recordid cdi_proquest_miscellaneous_2196528588
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects Analytical Chemistry
Animals
Biological Techniques
Biomedical and Life Sciences
Calibration
Cationic polymerization
Cell Line
Cell lines
Cell permeability
Cell physiology
Chlorocebus aethiops
Computational Biology/Bioinformatics
COS Cells
Cytological research
Design and construction
Fluorescence
Fluorescence microscopy
HEK293 Cells
HeLa Cells
High temperature
Humans
Image Processing, Computer-Assisted - statistics & numerical data
Imaging
Intracellular
Life Sciences
Light diffraction
Localization
Mammalian cells
Mammals
Methods
Mice
Microarrays
Microscopy
Microscopy, Fluorescence - methods
Microscopy, Fluorescence - statistics & numerical data
NIH 3T3 Cells
Optical Imaging - methods
Optical Imaging - statistics & numerical data
Organic Chemistry
Protocol
Saccharomyces cerevisiae - ultrastructure
Spatial discrimination
Spatial resolution
T-Lymphocytes - ultrastructure
Temperature
Temperature distribution
Temperature effects
Temperature measurement
Temperature requirements
Thermometers
Time-Lapse Imaging - methods
Time-Lapse Imaging - statistics & numerical data
Yeast
Yeasts
title Temperature imaging using a cationic linear fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20imaging%20using%20a%20cationic%20linear%20fluorescent%20polymeric%20thermometer%20and%20fluorescence%20lifetime%20imaging%20microscopy&rft.jtitle=Nature%20protocols&rft.au=Inada,%20Noriko&rft.date=2019-04-01&rft.volume=14&rft.issue=4&rft.spage=1293&rft.epage=1321&rft.pages=1293-1321&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/s41596-019-0145-7&rft_dat=%3Cgale_proqu%3EA580380558%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2198551725&rft_id=info:pmid/30903107&rft_galeid=A580380558&rfr_iscdi=true